A Game Theory-Based Incentive Mechanism for Collaborative Security of Federated Learning in Energy Blockchain Environment

计算机科学 激励 计算机安全 块链 博弈论 纳什均衡 经济 微观经济学
作者
Yunhua He,Mingshun Luo,Bin Wu,Limin Sun,Yongdong Wu,Zhiquan Liu,Ke Xiao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 21294-21308 被引量:14
标识
DOI:10.1109/jiot.2023.3282732
摘要

With the digital transformation of the energy industry, energy blockchain is playing an important role in application areas, such as energy data sharing and distributed power trading. In this process, the use of energy data is a top priority. Federated learning (FL) can enable the analysis and computation of energy data while protecting their privacy. However, traditional FL relies on a central server and parties involved are not fully trusted. In energy blockchain environment, FL also faces data poisoning attacks launched by energy departments, besides, the supervisory committee carrying out checking models can launch deception attacks. Therefore, we propose a game theory-based incentive mechanism for collaborative security of FL in energy blockchain environment, which can discourage nodes from taking malicious behaviors in iterative training of FL. First, we propose an FL model in energy blockchain environment, which can protect privacy and achieve collaborative security. Considering that game theory can be used to analyze the strategies of participants, we build a game model with energy departments and supervisory committee as players and design our incentive mechanism based on game theory, which is implemented by smart contracts. Even if the accuracy of model checking algorithm is low, malicious behaviors in FL can be reduced by using our incentive mechanism. In particular, we prove that our mechanism can lead game model to a Nash equilibrium (NE) that achieve collaborative security. Security analysis and experimental evaluation show that our incentive mechanism is feasible in energy blockchain with robustness, reliability, and low complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ustinian发布了新的文献求助10
3秒前
3秒前
zzz发布了新的文献求助10
6秒前
冯尔蓝完成签到,获得积分10
6秒前
7秒前
7秒前
李爱国应助ZW采纳,获得10
7秒前
脑洞疼应助醉熏的飞薇采纳,获得10
8秒前
科研通AI5应助小写采纳,获得10
11秒前
11秒前
miaomiao发布了新的文献求助10
14秒前
huoguo应助ustinian采纳,获得10
14秒前
HDJ完成签到,获得积分10
16秒前
幕雪发布了新的文献求助10
17秒前
19秒前
繁荣的心情应助隐形冰之采纳,获得60
20秒前
jenningseastera应助have勇气采纳,获得10
20秒前
22秒前
22秒前
在水一方应助1234采纳,获得10
22秒前
思源应助任风采纳,获得10
23秒前
ZW发布了新的文献求助10
24秒前
24秒前
不解释完成签到 ,获得积分10
24秒前
26秒前
tttt9999发布了新的文献求助10
26秒前
27秒前
脑洞疼应助沉静的大侠采纳,获得10
27秒前
27秒前
28秒前
科研通AI5应助123采纳,获得10
28秒前
30秒前
哎呦喂喂发布了新的文献求助10
31秒前
31秒前
ssy发布了新的文献求助10
32秒前
ZW完成签到,获得积分20
33秒前
33秒前
科目三应助繁荣的心情采纳,获得10
34秒前
wei发布了新的文献求助10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798051
求助须知:如何正确求助?哪些是违规求助? 3343486
关于积分的说明 10316305
捐赠科研通 3060189
什么是DOI,文献DOI怎么找? 1679400
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763221