Understanding the dynamic evolution of atomically dispersed Cu catalyst for CO2 electrochemical conversion using integrated XANES analysis and mechanistic studies

氧烷 催化作用 电催化剂 化学 电化学 密度泛函理论 纳米颗粒 选择性 金属 扩展X射线吸收精细结构 化学工程 纳米技术 吸收光谱法 材料科学 计算化学 物理化学 电极 光谱学 有机化学 工程类 物理 量子力学
作者
Jiayi Xu,Prajay Patel,Di‐Jia Liu,Tao Xu,Cong Liu
出处
期刊:Journal of Catalysis [Elsevier BV]
卷期号:425: 296-305 被引量:8
标识
DOI:10.1016/j.jcat.2023.06.020
摘要

Direct electrochemical conversion of CO2 to ethanol (CH3CH2OH) offers a promising strategy to lower CO2 emission while storing energy from renewable electricity. Our recent study reported a carbon-supported atomically dispersed Cu catalyst that achieved the highest reported selectivity for CH3CH2OH formation (91%) at a relatively low potential (-0.6 V), however, the active site structure that is responsible for such high activity and selectivity has yet to be understood. In this paper, we demonstrate a computational investigation combining X-ray absorption near edge structure (XANES) simulations and a mechanistic study via density functional theory (DFT) to understand the catalyst structures of this Cu catalyst during electrocatalysis and the corresponding reaction mechanisms of the key products. An integrated computational and experimental XANES analysis depicted the dynamic evolution of the catalytic site during electrocatalysis. The as-prepared, atomically dispersed Cu catalyst aggregates and forms metallic clusters/nanoparticles under electrochemical condition, which then break down to smaller oxidized clusters after electrocatalysis. The formed Cu clusters/nanoparticles showed distinct catalytic activity and selectivity as a function of particle size based on the mechanistic investigation using DFT, which is consistent with experimental observations for catalyst samples with different Cu loadings. This comprehensive study which combines experimental and computational XANES investigation, mechanistic study via DFT calculations, and experimental performance of the catalysts, provides unprecedented dynamic and mechanistic insights into the supported atomically dispersed metal catalysts for CO2 reduction. Such strategy and details gained can further guide discovery of novel catalyst materials for CO2 electrochemical reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
YumiPg完成签到,获得积分10
2秒前
3秒前
马麻薯完成签到,获得积分10
5秒前
王十七发布了新的文献求助10
6秒前
Allen完成签到,获得积分10
7秒前
8秒前
ikun0000发布了新的文献求助30
8秒前
9秒前
12秒前
科研鸟发布了新的文献求助10
12秒前
112233445566完成签到,获得积分20
14秒前
14秒前
14秒前
干饭大王应助budingman采纳,获得20
15秒前
科研通AI5应助郴郴采纳,获得10
17秒前
像风一样发布了新的文献求助10
18秒前
柯一一应助热心小松鼠采纳,获得10
19秒前
20秒前
Spydeer发布了新的文献求助10
20秒前
1111chen发布了新的文献求助30
20秒前
22秒前
扣扣登陆完成签到 ,获得积分10
23秒前
24秒前
LL发布了新的文献求助10
27秒前
Alex应助Dahai采纳,获得30
28秒前
完美世界应助琳琳采纳,获得10
28秒前
怡然冰之完成签到 ,获得积分10
28秒前
饱满不悔完成签到 ,获得积分10
28秒前
曼凡发布了新的文献求助10
29秒前
Bryan应助热心小松鼠采纳,获得10
31秒前
zzmAZUSA完成签到,获得积分10
31秒前
冷傲的水儿完成签到,获得积分20
33秒前
学业繁忙完成签到,获得积分10
34秒前
科研混子发布了新的文献求助10
35秒前
平淡的友易完成签到,获得积分10
35秒前
Ting应助武雨寒采纳,获得10
36秒前
36秒前
MrTStar完成签到 ,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432