Transparent conductive SnO2 thin films via resonant Ta doping

材料科学 透明导电膜 带隙 光电子学 薄膜 兴奋剂 掺杂剂 氧化铟锡 光导率 纳米技术 凝聚态物理 物理
作者
Vedaste Uwihoreye,Zhenni Yang,Jiaye Zhang,Yu‐Mei Lin,Xuan Liang,Yang Lu,Kelvin H. L. Zhang
出处
期刊:Science China. Materials [Springer Science+Business Media]
卷期号:66 (1): 264-271 被引量:15
标识
DOI:10.1007/s40843-022-2122-9
摘要

Transparent conductive oxide (TCO) thin films are highly desired as electrodes for modern flat-panel displays and solar cells. Alternative indium-free TCO materials are highly needed, because of the scarcity and the high price of indium. Based on the mechanism of resonant doping, Ta has been identified as an effective dopant for SnO2 to achieve highly conductive and transparent TCO. In this work, we fabricated a series of Ta-doped SnO2 thin films (Sn1−xTaxO2, x = 0.001, 0.01, 0.02, 0.03) with high conductivity and high optical transparency via a low-cost sol-gel spin coating method. The Sn0.98Ta0.02O2 film achieves the highest electrical conductivity of 855 S cm−1 with a carrier concentration of 2.3 × 1020 cm−3 and high mobility of 23 cm2 V−1 s−1. The films exhibit a very high optical transparency of 89.5% in the visible light region. High-resolution X-ray photoemission spectroscopy and optical spectroscopy were combined to gain insights into the electronic structure of the Sn1−xTaxO2 films. The optical bandgaps of the films are increased from 3.96 eV for the undoped SnO2 to 4.24 eV for the Sn0.98Ta0.02O2 film due to the occupation of the bottom of conduction band by free electrons, i.e., the Burstein-Moss effect. Interestingly, a bandgap shrinkage is also directly observed due to the bandgap renormalization arising from many-body interactions. The double guarantee of transparency and conductivity in Sn1−xTaxO2 films and the low-cost growth method provide a new platform for optoelectronic and solar cell applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
sniffice完成签到 ,获得积分10
刚刚
南宫封伦发布了新的文献求助30
1秒前
1571424272发布了新的文献求助30
1秒前
2秒前
All发布了新的文献求助10
3秒前
3秒前
sniffice关注了科研通微信公众号
4秒前
哭泣嵩完成签到,获得积分10
4秒前
5秒前
科研通AI5应助声声慢采纳,获得10
5秒前
G丶cc发布了新的文献求助10
5秒前
5秒前
852应助甜甜奇迹采纳,获得10
6秒前
技术T工发布了新的文献求助10
6秒前
ldh关注了科研通微信公众号
6秒前
6秒前
方寸发布了新的文献求助10
7秒前
June发布了新的文献求助100
8秒前
科研助手6应助乐乐采纳,获得20
8秒前
完美怜容完成签到,获得积分10
8秒前
CH发布了新的文献求助10
8秒前
8秒前
10秒前
gyh完成签到,获得积分10
10秒前
勤奋翠霜完成签到,获得积分10
10秒前
suki完成签到,获得积分10
10秒前
包飞雪完成签到,获得积分10
10秒前
benbiao发布了新的文献求助10
10秒前
刘欢发布了新的文献求助10
11秒前
Akim应助G丶cc采纳,获得10
11秒前
suyi发布了新的文献求助20
11秒前
方寸完成签到,获得积分10
12秒前
12秒前
13秒前
明天发布了新的文献求助10
13秒前
14秒前
Hello应助Emma采纳,获得10
14秒前
volcanoes发布了新的文献求助10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806711
求助须知:如何正确求助?哪些是违规求助? 3351419
关于积分的说明 10354020
捐赠科研通 3067233
什么是DOI,文献DOI怎么找? 1684428
邀请新用户注册赠送积分活动 809655
科研通“疑难数据库(出版商)”最低求助积分说明 765568