Quantitative ESG disclosure and divergence of ESG ratings

分歧(语言学) 会计 信用评级 业务 样品(材料) 企业社会责任 批评 精算学 公共关系 政治学 法学 哲学 语言学 化学 色谱法
作者
Min Liu
出处
期刊:Frontiers in Psychology [Frontiers Media SA]
卷期号:13: 936798-936798 被引量:90
标识
DOI:10.3389/fpsyg.2022.936798
摘要

Over the past decade, sustainable finance has been a topic of burgeoning significance for investors, and ESG ratings have become commonly used to implement ESG investment strategies in practice. Strikingly, it is widely documented in both academic literature and investment practices that ESG ratings of a given firm can be extremely different across rating providers. However, despite the disagreement in ESG ratings being subject to a lot of criticism, only few studies have examined the sources and determinants of rating divergence. This study examines whether quantitative ESG disclosure is conducive to rating convergence among agencies. Based on ESG rating data of Chinese A-share listed companies, the author finds that greater quantitative ESG disclosure, especially disclosure on environmental and social pillars, results in greater divergence of ESG ratings. When employing a difference-in-differences design with a quasi-experiment of disclosure guidance introduced by Hong Kong Exchange, the results show that if ESG disclosure is standardized and comparable, more numerical information reduces agencies' rating disagreement instead. Further analyses show that the lack of agreement is related to a low rating in the future. The author also finds that the effect of quantified ESG disclosure on rating divergence is more pronounced when firms are single businesses rather than diversified businesses with poor ESG performance rather than good ESG performance. The results are robust to alternative measures of ESG rating divergence, alternative sample, two-way clustering, and additional control variables. Taken together, the results indicate that quantitative ESG disclosure degenerates rating disagreement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccc完成签到,获得积分10
刚刚
叶子发布了新的文献求助10
刚刚
星月完成签到,获得积分10
刚刚
刚刚
yyy完成签到,获得积分10
1秒前
Hedy发布了新的文献求助10
1秒前
1秒前
1秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
乐空思应助许多多采纳,获得30
4秒前
韩半仙完成签到,获得积分20
4秒前
zjl完成签到,获得积分10
5秒前
5秒前
harry应助LSPR采纳,获得20
6秒前
dyk发布了新的文献求助30
6秒前
muyi发布了新的文献求助10
6秒前
曲七七完成签到,获得积分10
6秒前
司忆应助yyy采纳,获得10
6秒前
刘厚麟发布了新的文献求助10
6秒前
7秒前
李健应助hongw1980采纳,获得10
7秒前
7秒前
8秒前
8秒前
斯文败类应助泡泡老爷车采纳,获得10
8秒前
zjl发布了新的文献求助10
8秒前
wang应助zhuzhu采纳,获得10
9秒前
10秒前
糊涂pipi完成签到 ,获得积分10
10秒前
任性初夏完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
脑洞疼应助脑洞养鲸鱼采纳,获得10
10秒前
aixue发布了新的文献求助10
11秒前
wanci应助兴奋的千筹采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
smottom应助rita采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668461
求助须知:如何正确求助?哪些是违规求助? 4890899
关于积分的说明 15124429
捐赠科研通 4827351
什么是DOI,文献DOI怎么找? 2584580
邀请新用户注册赠送积分活动 1538453
关于科研通互助平台的介绍 1496742