材料科学
阳极
电解质
电池(电)
金属
金属锂
聚合物
钠
钠离子电池
无机化学
聚合物电解质
化学工程
电极
复合材料
冶金
离子电导率
物理化学
功率(物理)
化学
法拉第效率
工程类
物理
量子力学
作者
Baoyan Zhao,J. Y. Liu,Xiaoyong Fan,Yuxiang Guo,Cheng Lü,Yaxin Zhang,Ahu Shao,Jiawen Tang,Helin Wang,Chunwei Li,Yue Ma
标识
DOI:10.1002/aenm.202502716
摘要
Abstract Solid polymer electrolytes (SPEs) are a promising solution for solid‐state sodium metal batteries (SSMBs) due to their molecular tunability, non‐leakage properties, and ease of processing, but suffer from low room‐temperature (RT) ionic conductivity, poor mechanical strength, and inherent sodium (Na) anode interfacial incompatibility. In this study, an integrated SSMB configuration is introduced by pairing an ultrathin, self‐polymerized SPE membrane with the porous 3D InSb@Cu substrate. The Poly(DOL)‐based (PDOL) SPE is reinforced by aluminum trifluoromethanesulfonate (Al(CF 3 SO 3 ) 3 )‐anchored bacterial cellulose (BC), designated as ABC‐PDOL, achieving superior mechanical strength (15.21 MPa), high ionic conductivity (1.8×10 −4 S cm −1 at 30 °C), and enhanced Na + transference (0.67). Additionally, the InSb@Cu substrate provides abundant Na–In/Na–Sb sodiophilic sites, enabling dendrite‐free Na deposition up to 6 mAh cm −2 and interfacial compatibility with ABC–PDOL electrolyte even under a high current density of 1.4 mA cm −2 . When assembled into a layer‐stacked pouch cell, the 3D Na‐InSb@Cu|ABC–PDOL|Na 3 V 2 (PO 4 ) 3 configuration demonstrates robust cycling stability within a wide temperature range (25–80 °C) as well as the rate behavior up to 5 C. Operando XRD‐EIS‐DRT characterization further confirms the reversible lattice evolution of the cathode and enhanced Na + diffusion kinetics at the 3D alloy/SPE interface, highlighting the feasibility of the proposed SSMB design.
科研通智能强力驱动
Strongly Powered by AbleSci AI