MMAP-01 MULTI-MODAL MRI BASED SEGMENTATION OF BRAIN METASTASES USING ADAPTIVE SELF-ATTENTION

分割 计算机科学 人工智能 模式识别(心理学) 预处理器 深度学习 流体衰减反转恢复 规范化(社会学) 卷积神经网络 特征(语言学) 磁共振成像 人类学 放射科 哲学 社会学 医学 语言学
作者
Evan Savaria
出处
期刊:Neuro-oncology advances [Oxford University Press]
卷期号:7 (Supplement_2): ii12-ii12
标识
DOI:10.1093/noajnl/vdaf123.042
摘要

Abstract Brain metastases (BMs) are the most common adult central nervous system malignancy, affecting 20–40% of cancer patients. Accurate segmentation of metastatic lesions in multi-modal MRI is essential for treatment planning and prognosis however, manual delineation is time consuming and prone to variability. Traditional deep learning models such as U-Net, have improved segmentation accuracy but capture limited long-range dependencies and struggle with variations in metastasis size, shape, and distribution. This study introduces the Adaptive Integrated Multi-modal Segmentation (AIMS) model, an adaptive self-attention framework within a hybrid U-Net and Transformer architecture to enhance BM segmentation by leveraging multi-modal MRI integration. The proposed model integrates convolutional feature extraction with self-attention to capture both local and global contextual information while filtering out non-informative slices. The BraTS-METS dataset, consisting of 1303 cases with T1, T1Gd, T2, and FLAIR sequences, was used for training and evaluation. Preprocessing included bias field correction, intensity normalization, spatial resampling, and skull stripping. The encoder employs a U-Net backbone, while transformer based attention in the bottleneck refines feature interactions. Feature-wise attention maps guide the decoder to enhance segmentation accuracy, particularly for small and irregularly shaped metastases. The model was validated using a fivefold cross-validation approach and demonstrated superior segmentation performance, achieving higher Dice Similarity Coefficients (DSC) compared to state-of-the-art hybrid U-Net based models. Hausdorff Distance 95 (HD95) scores further indicated precise boundary delineation. By integrating adaptive self-attention with multi-modal MRI, the proposed model enhances segmentation accuracy and robustness in brain metastases. The findings highlight its potential for improving automated BM delineation, reducing manual inefficiencies, and assisting medical professionals in treatment planning and informed clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利毕业完成签到,获得积分10
刚刚
可爱归尘完成签到,获得积分10
刚刚
Himine完成签到,获得积分10
1秒前
喜喜完成签到,获得积分10
3秒前
不会学习的小郭完成签到 ,获得积分10
3秒前
青阳完成签到,获得积分10
3秒前
完美世界应助junjie采纳,获得10
4秒前
虚心的晟睿完成签到,获得积分10
4秒前
siebe完成签到,获得积分10
4秒前
虚幻的凤完成签到,获得积分10
5秒前
果子完成签到,获得积分10
5秒前
5秒前
我是帅帅发布了新的文献求助10
5秒前
Nina完成签到,获得积分10
6秒前
去码头整点薯条完成签到,获得积分10
6秒前
执着尔竹完成签到,获得积分10
7秒前
hkh发布了新的文献求助10
8秒前
Qiuju完成签到,获得积分10
8秒前
雪ノ下詩乃完成签到,获得积分10
8秒前
wuyuan完成签到,获得积分10
9秒前
adovj完成签到 ,获得积分10
9秒前
峰儿背完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6应助零源采纳,获得10
9秒前
10秒前
风中的跳跳糖完成签到,获得积分10
10秒前
追梦完成签到 ,获得积分10
11秒前
左眼天堂完成签到,获得积分10
11秒前
hotcas完成签到,获得积分10
12秒前
米诺子完成签到,获得积分10
13秒前
任我行完成签到,获得积分10
13秒前
13秒前
默默的无敌完成签到,获得积分10
13秒前
木火灰完成签到,获得积分10
13秒前
14秒前
Zhu完成签到,获得积分10
14秒前
酷波er应助金不换采纳,获得10
14秒前
材料十三郎完成签到 ,获得积分10
15秒前
奋斗平卉完成签到,获得积分10
15秒前
李静完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4871233
求助须知:如何正确求助?哪些是违规求助? 4161355
关于积分的说明 12903904
捐赠科研通 3917293
什么是DOI,文献DOI怎么找? 2150968
邀请新用户注册赠送积分活动 1169358
关于科研通互助平台的介绍 1073194