已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Method for estimating real‐scale 3D human body shape from an image based on 3D camera calibration and computer graphics‐based reverse projection photogrammetry

摄影测量学 计算机视觉 人工智能 计算机科学 投影(关系代数) 计算机图形学 方向(向量空间) 摄像机切除 校准 比例(比率) 职位(财务) 绘图 计算机图形学(图像) 数学 算法 地理 统计 几何学 地图学 经济 财务
作者
Daisuke Imoto,Masakatsu Honma,Masato Asano,Wataru Sakurai,Kenji Kurosawa
出处
期刊:Journal of Forensic Sciences [Wiley]
卷期号:70 (6): 2276-2296
标识
DOI:10.1111/1556-4029.70130
摘要

Abstract The combination of computer vision (CV) and computer graphics (CG) is being developed for use in many fields. Consequently, reverse projection photogrammetry, which identifies geometric properties of a subject based on accurate reproduction of the image content, is beginning to replace analysis combining CV and CG. Since an image captured by a camera has two‐dimensional (2D) geometry, estimating real‐scale three dimensional (3D) information about a human or object from a low‐resolution security camera image is a challenge and has not been achieved without prior knowledge of the person or object. However, deep learning technology that applies fitting a 3D human body shape model to a human image has been developed, but it is difficult to scale the reconstructed model to the actual scale with only a 2D image as an input. In this study, we propose a novel method to estimate a real‐scale 3D human body shape model (SMPL‐X model) from a human image via a combination of 3D camera calibration and CG‐based reverse projection photogrammetry. The method estimates the position, orientation, posture, and body shape of a 3D human body shape model of a human image in a non‐straight posture, which is difficult to analyze conventionally. The method was also used to estimate height and weight based on the estimated 3D human body shape, greatly expanding the range of analysis of height and weight estimation. The equal error rate from a few hundred to a few thousand comparisons was evaluated toward realizing person verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武子阳完成签到 ,获得积分10
1秒前
1秒前
yiluyouni发布了新的文献求助10
2秒前
包容豪发布了新的文献求助10
3秒前
贪玩天寿完成签到 ,获得积分10
4秒前
十七完成签到,获得积分10
4秒前
5秒前
xxfsx应助耶耶粘豆包采纳,获得10
6秒前
零几年发布了新的文献求助10
6秒前
6秒前
7秒前
T1aNer299发布了新的文献求助10
8秒前
9秒前
思源应助yiluyouni采纳,获得10
9秒前
10秒前
xxfsx应助科研通管家采纳,获得20
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
hhh关闭了hhh文献求助
10秒前
浮游应助科研通管家采纳,获得10
10秒前
冰激凌发布了新的文献求助10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
Takahara2000应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
和谐板栗完成签到 ,获得积分10
11秒前
嗯呐完成签到,获得积分10
12秒前
14秒前
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454635
求助须知:如何正确求助?哪些是违规求助? 4561964
关于积分的说明 14284045
捐赠科研通 4485792
什么是DOI,文献DOI怎么找? 2457038
邀请新用户注册赠送积分活动 1447677
关于科研通互助平台的介绍 1422913