已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A CT-Based Deep Learning Radiomics Nomogram to Predict Histological Grades of Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 逻辑回归 病理 头颈部癌 曲线下面积 头颈部 内科学 放射科 肿瘤科 放射治疗 外科
作者
Ying-mei Zheng,Junyi Che,Ming-gang Yuan,Zengjie Wu,Jing Pang,Ruizhi Zhou,Xiaoli Li,Cheng Dong
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (8): 1591-1599 被引量:24
标识
DOI:10.1016/j.acra.2022.11.007
摘要

Accurate pretreatment assessment of histological differentiation grade of head and neck squamous cell carcinoma (HNSCC) is crucial for prognosis evaluation. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict histological differentiation grades of HNSCC.A total of 204 patients with HNSCC who underwent CECT scans were enrolled in this study. The participants recruited from two hospitals were split into a training set (n=124, 74 well/moderately differentiated and 50 poorly differentiated) of patients from one hospital and an external test set of patients from the other hospital (n=80, 49 well/moderately differentiated and 31 poorly differentiated). CECT-based manually-extracted radiomics (MER) features and deep learning (DL) features were extracted and selected. The selected MER features and DL features were then combined to construct a DLRN via multivariate logistic regression. The predictive performance of the DLRN was assessed using ROCs and decision curve analysis (DCA).Three MER features and seven DL features were finally selected. The DLRN incorporating the selected MER and DL features showed good predictive value for the histological differentiation grades of HNSCC (well/moderately differentiated vs. poorly differentiated) in both the training (AUC, 0.878) and test (AUC, 0.822) sets. DCA demonstrated that the DLRN was clinically useful for predicting histological differentiation grades of HNSCC.A CECT-based DLRN was constructed to predict histological differentiation grades of HNSCC. The DLRN showed good predictive efficacy and might be useful for prognostic evaluation of patients with HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jerry完成签到,获得积分10
1秒前
shuhaha完成签到,获得积分10
2秒前
3秒前
蒲公英完成签到 ,获得积分10
3秒前
Morris发布了新的文献求助10
3秒前
Tsin778完成签到 ,获得积分10
4秒前
NIHAO发布了新的文献求助10
4秒前
大力的宝川完成签到 ,获得积分10
4秒前
5秒前
zfj完成签到 ,获得积分10
5秒前
5秒前
MHM完成签到,获得积分10
5秒前
insomnia417完成签到,获得积分0
6秒前
明亮的八宝粥完成签到,获得积分10
6秒前
狗十七完成签到 ,获得积分10
7秒前
8秒前
Fiona完成签到 ,获得积分10
9秒前
Double_N完成签到,获得积分10
12秒前
12秒前
山东老铁完成签到,获得积分10
13秒前
zzzllove完成签到 ,获得积分10
13秒前
小小鱼完成签到 ,获得积分10
13秒前
少7一点8发布了新的文献求助30
13秒前
你学习了吗我学不了一点完成签到 ,获得积分10
15秒前
Morris完成签到,获得积分10
16秒前
17秒前
yangsouth完成签到 ,获得积分10
17秒前
None完成签到 ,获得积分10
20秒前
ZM完成签到 ,获得积分10
21秒前
suliang应助文静皮卡丘采纳,获得10
21秒前
kw98完成签到 ,获得积分10
22秒前
rick3455完成签到 ,获得积分10
23秒前
ANESTHESIA_XY完成签到 ,获得积分10
24秒前
24秒前
25秒前
wao完成签到 ,获得积分10
25秒前
26秒前
飞鱼z完成签到 ,获得积分10
26秒前
朝气完成签到,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815638
求助须知:如何正确求助?哪些是违规求助? 3359235
关于积分的说明 10400923
捐赠科研通 3076945
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813633
科研通“疑难数据库(出版商)”最低求助积分说明 767674