期望理论
分析
结构方程建模
晋升(国际象棋)
独创性
知识管理
资源(消歧)
业务
营销
工程类
心理学
计算机科学
数据科学
社会心理学
计算机网络
机器学习
政治
创造力
政治学
法学
作者
Meenal Arora,Anshika Prakash,Amit Mittal,Swati Singh
标识
DOI:10.1108/ecam-09-2021-0795
摘要
Purpose Despite the extensive benefits of human resource (HR) analytics, the intention to adopt such technology is still a matter of concern in the engineering and construction sectors. This study aims to examine the slow adoption of HR analytics among HR professionals in the engineering and construction sector. Design/methodology/approach A cross-sectional online survey including 376 HR executives working in Indian-based engineering and construction firms was conducted. Hierarchal regression, structural equation modeling and artificial neural networks (ANN) were applied to evaluate the relative importance of HR analytics predictors. Findings The results reveal that hedonic motivation (HM), data availability (DA) and performance expectancy (PE) influence the behavioral intention (BI) to use HR analytics, whereas effort expectancy (EE), quantitative self-efficacy (QSE), habit (HA) and social influence (SI) act as barriers to its adoption. Moreover, PE was the most influential predictor of BI. Practical implications Based on the findings of this study, engineering and construction industry managers can formulate strategies for the implementation and promotion of HR analytics to enhance organizational performance. Originality/value This study draws attention to evidence-based decision-making, emphasizing barriers to the adoption of HR analytics. This study also emphasizes the concept of DA and QSE to enhance adoption among HR professionals, specifically in the engineering and construction industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI