离散化
数学
欧拉方程
间断伽辽金法
压缩性
熵(时间箭头)
欧拉公式
纳维-斯托克斯方程组
限制
反向欧拉法
数学分析
应用数学
伽辽金法
半隐式欧拉法
有限元法
物理
机械
热力学
工程类
机械工程
作者
Yimin Lin,Jesse Chan,Ignacio Tomaš
标识
DOI:10.1016/j.jcp.2022.111850
摘要
High-order entropy-stable discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations require the positivity of thermodynamic quantities in order to guarantee their well-posedness. In this work, we introduce a positivity limiting strategy for entropy-stable discontinuous Galerkin discretizations constructed by blending high order solutions with a low order positivity-preserving discretization. The proposed low order discretization is semi-discretely entropy stable, and the proposed limiting strategy is positivity preserving for the compressible Euler and Navier-Stokes equations. Numerical experiments confirm the high order accuracy and robustness of the proposed strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI