惯性导航系统
航向(导航)
惯性测量装置
卡尔曼滤波器
计算机科学
计算机视觉
全球定位系统
导航系统
风三角
人工智能
离群值
GPS/INS
辅助全球定位系统
大地测量学
移动机器人
方向(向量空间)
地理
机器人
数学
几何学
电信
机器人控制
作者
Stephen Krauss,Daniel J. Stilwell
标识
DOI:10.1109/oceans47191.2022.9977251
摘要
In this work, we present an aided inertial navigation system for an autonomous underwater vehicle (AUV) using an unscented Kalman filter on manifolds (UKF-M). The inertial navigation estimate is aided by a Doppler velocity log (DVL), depth sensor, acoustic range and, while on the surface, GPS. The sensor model for each navigation sensor on the AUV is explicitly described, including compensation for lever arm offsets between the IMU and each sensor. Additionally, an outlier rejection step is proposed to reject measurement outliers that would degrade navigation performance. The UKF-M for AUV navigation is implemented for real-time navigation on the Virginia Tech 690 AUV and validated in the field. Finally, by post-processing the navigation sensor data, we show experimentally that the UKF-M is able to converge to the correct heading in the presence of arbitrarily large initial heading error.
科研通智能强力驱动
Strongly Powered by AbleSci AI