Liquid metal gallium-based printing of Cu-doped p-type Ga2O3 semiconductor and Ga2O3 homojunction diodes

同质结 材料科学 兴奋剂 光电子学 半导体 二极管 掺杂剂 欧姆接触 纳米技术 图层(电子)
作者
Qian Li,Bangdeng Du,Jianye Gao,Jing Liu
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:10 (1) 被引量:37
标识
DOI:10.1063/5.0097346
摘要

As a promising third-generation semiconductor, gallium oxide (Ga2O3) is currently facing bottleneck for its p-type doping. The doping process of conventional semiconductors usually introduces trace impurities, which is a major technical problem in the electronics industry. In this article, we conceived that the process complexity could be significantly alleviated, and a high degree of control over the results could be attained using the selective enrichment of liquid metal interfaces and harvesting the doped metal oxide semiconductor layers. An appropriate mechanism is thus proposed to prepare the doped semiconducting based on multicomponent liquid metal alloys. Liquid metal alloys with the certain Cu weight ratios in bulk are utilized to harvest Cu-doped Ga2O3 films, which result in p-type conductivity. Then, field-effect transistors were integrated using the printed p and n-type Ga2O3 films and demonstrated to own excellent electrical properties and stability. Au electrodes fabricated on the printed Ga2O3 and Cu-doped Ga2O3 layers showed good Ohmic behavior. Furthermore, high-power diodes are realized using printed p and n-type Ga2O3 homojunction through combining van der Waals stacking with transfer printing. The fabricated Ga2O3 homojunction diode exhibited good efficiency at room temperature, involving a rectification ratio of 103 and forward current density at 10 V (J@10 V) of 1.3 mA. This opens the opportunity for the cost-effective creation of semiconductor films with controlled metal dopants. The process disclosed here suggests important strategies for further synthesis and manufacturing routes in electronics industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佟语雪完成签到,获得积分10
1秒前
充电宝应助shunshun51213采纳,获得10
3秒前
mia完成签到,获得积分10
3秒前
安详的自中完成签到,获得积分10
6秒前
内向的绝施完成签到 ,获得积分10
6秒前
7秒前
饿哭了塞完成签到 ,获得积分10
9秒前
开始游戏55完成签到,获得积分10
10秒前
11秒前
Mryuan完成签到,获得积分10
12秒前
完美世界应助积极从蕾采纳,获得10
13秒前
如意白风完成签到 ,获得积分10
14秒前
传奇3应助一只东北鸟采纳,获得10
15秒前
熹微完成签到 ,获得积分20
15秒前
所所应助AVA采纳,获得10
17秒前
18秒前
如泣草芥完成签到,获得积分10
19秒前
一进实验室就犯困完成签到,获得积分10
19秒前
24秒前
大成子完成签到,获得积分10
24秒前
淡定雁开发布了新的文献求助10
24秒前
小青年儿完成签到 ,获得积分10
28秒前
爱科研的的小禾完成签到 ,获得积分10
28秒前
29秒前
amumu完成签到,获得积分10
29秒前
CDQ完成签到,获得积分10
31秒前
CipherSage应助shunshun51213采纳,获得10
32秒前
我是老大应助淡定雁开采纳,获得10
33秒前
34秒前
所所应助Sprinkle采纳,获得10
36秒前
Zephr完成签到,获得积分20
36秒前
Jasper应助monkey采纳,获得10
38秒前
Zephr发布了新的文献求助10
40秒前
憨憨的小于完成签到,获得积分10
41秒前
大了个头完成签到 ,获得积分10
42秒前
longyuyan完成签到,获得积分10
50秒前
52秒前
喜欢皮卡丘的贾同学完成签到,获得积分10
56秒前
58秒前
山神厘子完成签到,获得积分10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776093
求助须知:如何正确求助?哪些是违规求助? 3321687
关于积分的说明 10206639
捐赠科研通 3036787
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841