计算机科学
卷积神经网络
人工智能
任务(项目管理)
深度学习
领域(数学)
代表(政治)
语音识别
循环神经网络
模式识别(心理学)
人工神经网络
数学
管理
政治
政治学
纯数学
法学
经济
作者
Noopur Srivastava,Shivam Ruhil,Gaurav Kaushal
标识
DOI:10.1109/cict56698.2022.9997961
摘要
Music genre classification is the task of classifying audio clips into well defined music genres. It is a popular task in the field of deep learning. We use CRNNs (Convolutional Recurrent Neural Networks) for the task. CRNNs are able to take advantage of both the spatial features and the temporal features of the data. We use MFCCs as a representation of our audio data. We use two models of CRNN: CNN-GRU and CNN-LSTM. We achieve the accuracy of 85.7% using CNN-GRU and an accuracy of 87.5% using CNN-LSTM on the GTZAN dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI