Discovery of allosteric SHP2 inhibitors through ensemble-based consensus molecular docking, endpoint and absolute binding free energy calculations

变构调节 生物信息学 计算生物学 化学 对接(动物) 蛋白质酪氨酸磷酸酶 生物化学 磷酸酶 结合位点 生物 基因 医学 护理部
作者
Maryam Jama,Marawan Ahmed,Anna Jutla,Carson W. Wiethan,Jitendra Kumar,Tae Chul Moon,F. G. West,Michael Overduin,Khaled Barakat
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106442-106442 被引量:3
标识
DOI:10.1016/j.compbiomed.2022.106442
摘要

SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is a cytoplasmic protein -tyrosine phosphatase encoded by the gene PTPN11. It plays a crucial role in regulating cell growth and differentiation. Specifically, SHP2 is an oncoprotein associated with developmental pathologies and several different cancer types, including gastric, leukemia and breast cancer and is of great therapeutic interest. Given these roles, current research efforts have focused on developing SHP2 inhibitors. Allosteric SHP2 inhibitors have been shown to be more selective and pharmacologically appealing compared to competitive catalytic inhibitors targeting SHP2. Nevertheless, there remains a need for novel allosteric inhibitor scaffolds targeting SHP2 to develop compounds with improved selectivity, cell permeability, and bioavailability. Towards this goal, this study applied various computational tools to screen over 6 million compounds against the allosteric site within SHP2. The top-ranked hits from our in-silico screening were validated using protein thermal shift and biolayer interferometry assays, revealing three potent compounds. Kinetic binding assays were employed to measure the binding affinities of the top-ranked compounds and demonstrated that they all bind to SHP2 with a nanomolar affinity. Hence the compounds and the computational workflow described herein provide an effective approach for identifying and designing a generation of improved allosteric inhibitors of SHP2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣条发布了新的文献求助30
刚刚
yjh729完成签到,获得积分10
刚刚
re发布了新的文献求助10
刚刚
孤存驳回了Cleo应助
1秒前
搜集达人应助飞飞飞采纳,获得10
1秒前
SciGPT应助zqm采纳,获得10
3秒前
Justin完成签到,获得积分10
3秒前
礼鱼鲤遇完成签到 ,获得积分10
3秒前
Zuzim发布了新的文献求助10
3秒前
kuryu发布了新的文献求助10
4秒前
nicholas完成签到,获得积分10
6秒前
礼鱼鲤遇关注了科研通微信公众号
6秒前
寂寞致幻完成签到,获得积分10
6秒前
虚幻百川应助Y7ue采纳,获得10
7秒前
天天快乐应助swordlee采纳,获得30
7秒前
tyh完成签到,获得积分10
7秒前
爱美丽应助liu采纳,获得10
8秒前
9秒前
楚眠完成签到,获得积分10
9秒前
qingfengnai完成签到,获得积分10
9秒前
10秒前
re完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
浅海111完成签到,获得积分10
12秒前
大模型应助qitengzhu采纳,获得10
12秒前
14秒前
浮游应助Lny采纳,获得20
15秒前
化雪彼岸发布了新的文献求助10
17秒前
lmh发布了新的文献求助10
18秒前
19秒前
winwin完成签到 ,获得积分10
19秒前
烂漫的成风完成签到,获得积分10
20秒前
20秒前
三方完成签到,获得积分10
22秒前
xiaohe发布了新的文献求助10
23秒前
李健的小迷弟应助ramsey33采纳,获得20
24秒前
传奇3应助lmh采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511578
求助须知:如何正确求助?哪些是违规求助? 4606147
关于积分的说明 14498296
捐赠科研通 4541470
什么是DOI,文献DOI怎么找? 2488503
邀请新用户注册赠送积分活动 1470552
关于科研通互助平台的介绍 1442910