Neural-network solutions to stochastic reaction networks

自回归模型 常微分方程 人工神经网络 联合概率分布 计算机科学 主方程 随机微分方程 状态空间 概率分布 应用数学 数学优化 微分方程 数学 人工智能 物理 统计 数学分析 量子 量子力学
作者
Ying Tang,Jiayu Weng,Pan Zhang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (4): 376-385 被引量:7
标识
DOI:10.1038/s42256-023-00632-6
摘要

The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species. This makes it challenging to investigate the stochastic reaction network. Here we propose a machine learning approach using a variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated previously by another method. In contrast with simulating single trajectories, this approach tracks the time evolution of the joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probabilities. We apply the approach to representative examples in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits plasticity in representing the multimodal distribution, cooperates with the conservation law, enables time-dependent reaction rates and is efficient for high-dimensional reaction networks, allowing a flexible upper count limit. The results suggest a general approach to study stochastic reaction networks based on modern machine learning. Stochastic reaction networks involve solving a system of ordinary differential equations, which becomes challenging as the number of reactive species grows, but a new approach based on evolving a variational autoregressive neural network provides an efficient way to track time evolution of the joint probability distribution for general reaction networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
科研通AI2S应助东方采纳,获得10
4秒前
甜甜玫瑰应助binbin采纳,获得10
4秒前
Owen应助火星上仰采纳,获得30
4秒前
Akim应助陈槊诸采纳,获得10
5秒前
6秒前
qy发布了新的文献求助20
6秒前
7秒前
8秒前
李颖完成签到,获得积分10
9秒前
ania完成签到,获得积分10
9秒前
cc发布了新的文献求助10
10秒前
乐乐应助xh采纳,获得10
10秒前
青青发布了新的文献求助10
12秒前
科研通AI5应助Sia采纳,获得10
12秒前
调皮以松完成签到,获得积分20
13秒前
坦率不惜发布了新的文献求助10
13秒前
科研通AI5应助郑木木采纳,获得10
13秒前
15秒前
15秒前
Micro9完成签到,获得积分10
16秒前
蛋白聚糖发布了新的文献求助200
16秒前
20秒前
冷泠关注了科研通微信公众号
21秒前
科研通AI5应助舒心的幻天采纳,获得10
22秒前
22秒前
cc完成签到,获得积分20
22秒前
Manchester发布了新的文献求助10
22秒前
happyness完成签到 ,获得积分10
23秒前
美好海瑶完成签到,获得积分10
24秒前
英姑应助浅日采纳,获得50
24秒前
24秒前
科研通AI5应助mjr采纳,获得10
24秒前
25秒前
江江发布了新的文献求助10
25秒前
26秒前
wzc完成签到,获得积分10
26秒前
eeee完成签到,获得积分10
26秒前
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811261
求助须知:如何正确求助?哪些是违规求助? 3355666
关于积分的说明 10377085
捐赠科研通 3072462
什么是DOI,文献DOI怎么找? 1687583
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766741