阻燃剂
胶粘剂
可燃性
材料科学
热解
磷酸盐
化学工程
芳基
共价键
高分子化学
有机化学
复合材料
化学
工程类
图层(电子)
烷基
作者
Vitus Hupp,Bernhard Schartel,Kerstin Flothmeier,Andreas Hartwig
标识
DOI:10.1016/j.jaap.2024.106658
摘要
Pressure-sensitive adhesive tapes are used in a variety of applications such as construction, aircrafts, railway vehicles, and ships, where flame retardancy is essential. Especially in these applications, phosphorus-based flame retardants are often chosen over halogenated ones due to their advantages in terms of toxicity. Although there are pressure-sensitive adhesives with phosphorus flame retardants available on the market, their flame-retardant modes of action and mechanisms are not entirely understood. This research article provides fundamental pyrolysis research of three phosphorus-based flame retardants that exhibit different mechanisms in a pressure-sensitive adhesive matrix. The flame-retardants modes of action and mechanisms of a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivate, an aryl phosphate, and a self-synthesized, covalently bonded DOPO derivate (copolymerized) are investigated. The blended DOPO derivate is volatilized at rather low temperatures while the covalently bonded DOPO derivate decomposes together with the polymer matrix at the same temperature. Both DOPO derivates release PO radicals which are known for their flame inhibition. The aryl phosphate decomposes at higher temperatures, releases small amounts of aryl phosphates into the gas phase, and acts predominantly the condensed phase. The aryl phosphate acts as precursor for phosphoric acid and improves the charring of the pressure sensitive adhesive matrix. All flame retardants enhance the flammability of the adhesives depending on their individual mode of action while the covalently bonded flame retardant additionally improves the mechanical properties at elevated temperatures making it a promising future technology for pressure-sensitive adhesives.
科研通智能强力驱动
Strongly Powered by AbleSci AI