Fault diagnosis method of rolling bearing based on noise reduction enhanced multi-frequency scale network

计算机科学 断层(地质) 方位(导航) 判别式 噪音(视频) 降噪 振动 人工智能 模式识别(心理学) 还原(数学) 特征提取 声学 数学 物理 几何学 地震学 图像(数学) 地质学
作者
Dewen Kong,Hongfei Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116014-116014 被引量:1
标识
DOI:10.1088/1361-6501/ad704b
摘要

Abstract Currently, data-driven deep learning methods have attracted much attention in the field of bearing fault diagnosis. Nonetheless, the existing rolling bearing fault methods suffer from insufficient fault feature extraction capability when dealing with variable operating conditions and strong noise environments. Therefore, this paper proposes a noise reduction enhanced multi-frequency scale network model-bidirectional long short-term memory network based on the collected bearing vibration data source. The noise embedded in the original vibration signals under different working conditions is effectively removed by designing an adaptive threshold noise reduction module. To comprehensively explore fault information within the vibration signals, a combined strategy of ordinary convolution and dilated convolution is proposed to cross-extract signal features across high, medium, and low multi-frequency scales. Simultaneously, a self-attention mechanism mode is integrated into the traditional channel attention mechanism to augment the model’s focus on multichannel and internal features, addressing the challenge of incomplete feature extraction under complex working conditions. Furthermore, the output mechanism is optimized and reacquired to grasp the intrinsic links between the combined fault characteristics. This process enhances the model’s discriminative power for early bearing faults and its generalization ability to accommodate data from diverse working conditions, thereby facilitating accurate diagnosis of bearing faults. Comparison and ablation experiments are conducted on multiple aero-engine rolling bearing datasets, validating the superior noise-resistant diagnostic performance of the method proposed in this paper under complex working conditions, which offers significant advantages compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻金毛发布了新的文献求助10
刚刚
Ice发布了新的文献求助10
刚刚
1秒前
zhangzi发布了新的文献求助10
2秒前
殷勤的雨灵完成签到,获得积分10
2秒前
李健应助sssss采纳,获得20
2秒前
高兴可乐发布了新的文献求助20
3秒前
5秒前
奥特曼发布了新的文献求助10
6秒前
9秒前
9秒前
Night关注了科研通微信公众号
9秒前
陈江河发布了新的文献求助10
10秒前
nfyyqwj发布了新的文献求助10
13秒前
13秒前
英姑应助Passion采纳,获得10
14秒前
STZ完成签到,获得积分10
14秒前
czx发布了新的文献求助10
15秒前
47关注了科研通微信公众号
16秒前
奥特曼完成签到,获得积分10
17秒前
burou发布了新的文献求助10
17秒前
17秒前
20秒前
lhx完成签到,获得积分10
22秒前
XXGG完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
25秒前
nfyyqwj完成签到,获得积分10
25秒前
Night发布了新的文献求助10
27秒前
博弈春秋发布了新的文献求助10
28秒前
powero发布了新的文献求助10
29秒前
29秒前
科研通AI5应助迷人若冰采纳,获得10
31秒前
32秒前
35秒前
36秒前
石健林发布了新的文献求助10
36秒前
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171475
求助须知:如何正确求助?哪些是违规求助? 3706954
关于积分的说明 11695834
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860819
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754