Overcoming data gaps in life course epidemiology by matching across cohorts

生命历程法 流行病学 匹配(统计) 倾向得分匹配 医学 人口学 统计 心理学 数学 社会学 发展心理学 内科学
作者
Katrina Kezios,Scott C. Zimmerman,Peter T. Buto,Kara E. Rudolph,Sebastián Calónico,Adina Zeki Al Hazzouri,M. Maria Glymour
出处
期刊:Epidemiology [Lippincott Williams & Wilkins]
卷期号:35 (5): 610-617 被引量:3
标识
DOI:10.1097/ede.0000000000001761
摘要

Life course epidemiology is hampered by the absence of large studies with exposures and outcomes measured at different life stages in the same individuals. We describe when the effect of an exposure ( A ) on an outcome ( Y ) in a target population is identifiable in a combined (“synthetic”) cohort created by pooling an early-life cohort including measures of A with a late-life cohort including measures of Y . We enumerate causal assumptions needed for unbiased effect estimation in the synthetic cohort and illustrate by simulating target populations under four causal models. From each target population, we randomly sampled early- and late-life cohorts and created a synthetic cohort by matching individuals from the two cohorts based on mediators and confounders. We estimated the effect of A on Y in the synthetic cohort, varying matching variables, the match ratio, and the strength of association between matching variables and A . Finally, we compared bias in the synthetic cohort estimates when matching variables did not d-separate A and Y to the bias expected in the original cohort. When the set of matching variables includes all variables d-connecting exposure and outcome (i.e., variables blocking all backdoor and front-door pathways), the synthetic cohort yields unbiased effect estimates. Even when matching variables did not fully account for confounders, the synthetic cohort estimate was sometimes less biased than comparable estimates in the original cohort. Methods based on merging cohorts may hasten the evaluation of early- and mid-life determinants of late-life health but rely on available measures of both confounders and mediators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
usu应助ZONG采纳,获得10
1秒前
学术学习发布了新的文献求助10
1秒前
小奔完成签到,获得积分10
2秒前
梦桃发布了新的文献求助10
2秒前
3秒前
3秒前
无敌的番茄炒蛋完成签到,获得积分10
3秒前
JxJ完成签到,获得积分10
4秒前
老实世倌发布了新的文献求助10
4秒前
顺顺科研完成签到 ,获得积分10
4秒前
zqy完成签到 ,获得积分10
4秒前
英姑应助倾语采纳,获得10
5秒前
guosheng完成签到,获得积分10
5秒前
5秒前
5秒前
郁乾完成签到,获得积分10
6秒前
小虫完成签到,获得积分10
6秒前
Owen应助tenz采纳,获得10
6秒前
zzz完成签到,获得积分10
6秒前
hql_sdu发布了新的文献求助10
6秒前
liugg完成签到,获得积分10
6秒前
香蕉觅云应助哈哈哈采纳,获得10
7秒前
202422040716发布了新的文献求助10
7秒前
王某某完成签到,获得积分10
7秒前
呆鸥完成签到,获得积分10
7秒前
8秒前
CQCQ应助浮名半生采纳,获得20
8秒前
米兰完成签到 ,获得积分10
8秒前
眯眯眼的谷冬完成签到 ,获得积分10
9秒前
搜集达人应助坚强西牛采纳,获得10
9秒前
9秒前
丰富烧鹅完成签到,获得积分10
10秒前
RichieXU完成签到,获得积分10
10秒前
stt发布了新的文献求助10
10秒前
细心妙菡完成签到 ,获得积分10
10秒前
笨笨米卡完成签到,获得积分10
11秒前
toda_erica完成签到,获得积分10
11秒前
丘比特应助叽叽喳喳采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4501138
求助须知:如何正确求助?哪些是违规求助? 3951175
关于积分的说明 12248879
捐赠科研通 3610204
什么是DOI,文献DOI怎么找? 1986134
邀请新用户注册赠送积分活动 1022565
科研通“疑难数据库(出版商)”最低求助积分说明 914928