A denoising diffusion probabilistic model for metal artifact reduction in CT

概率逻辑 降噪 工件(错误) 还原(数学) 人工智能 计算机科学 图像去噪 扩散 计算机视觉 模式识别(心理学) 数学 物理 几何学 热力学
作者
Grigorios M. Karageorgos,Jiayong Zhang,Nils Peters,Wenjun Xia,Chuang Niu,Harald Paganetti,Ge Wang,Bruno De Man
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3521-3532 被引量:2
标识
DOI:10.1109/tmi.2024.3416398
摘要

The presence of metal objects leads to corrupted CT projection measurements, resulting in metal artifacts in the reconstructed CT images. AI promises to offer improved solutions to estimate missing sinogram data for metal artifact reduction (MAR), as previously shown with convolutional neural networks (CNNs) and generative adversarial networks (GANs). Recently, denoising diffusion probabilistic models (DDPM) have shown great promise in image generation tasks, potentially outperforming GANs. In this study, a DDPM-based approach is proposed for inpainting of missing sinogram data for improved MAR. The proposed model is unconditionally trained, free from information on metal objects, which can potentially enhance its generalization capabilities across different types of metal implants compared to conditionally trained approaches. The performance of the proposed technique was evaluated and compared to the state-of-the-art normalized MAR (NMAR) approach as well as to CNN-based and GAN-based MAR approaches. The DDPM-based approach provided significantly higher SSIM and PSNR, as compared to NMAR (SSIM: p [Formula: see text]; PSNR: p [Formula: see text]), the CNN (SSIM: p [Formula: see text]; PSNR: p [Formula: see text]) and the GAN (SSIM: p [Formula: see text]; PSNR: p <0.05) methods. The DDPM-MAR technique was further evaluated based on clinically relevant image quality metrics on clinical CT images with virtually introduced metal objects and metal artifacts, demonstrating superior quality relative to the other three models. In general, the AI-based techniques showed improved MAR performance compared to the non-AI-based NMAR approach. The proposed methodology shows promise in enhancing the effectiveness of MAR, and therefore improving the diagnostic accuracy of CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西原的橙果完成签到,获得积分10
1秒前
阿七完成签到,获得积分10
1秒前
tt耶发布了新的文献求助10
3秒前
4秒前
天天完成签到,获得积分10
6秒前
Lucas应助刘叶采纳,获得10
7秒前
yiyiyi完成签到 ,获得积分10
8秒前
尤玉发布了新的文献求助20
10秒前
10秒前
FYH发布了新的文献求助10
10秒前
anti1988完成签到,获得积分10
11秒前
情怀应助NINI采纳,获得10
12秒前
13秒前
013完成签到,获得积分10
13秒前
xumengyu发布了新的文献求助10
15秒前
16秒前
16秒前
doctor2023完成签到,获得积分10
17秒前
蓦然回首完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
19秒前
应樱完成签到 ,获得积分10
21秒前
小莲藕给小莲藕的求助进行了留言
22秒前
23秒前
24秒前
27秒前
爱吃汤圆的兔子完成签到,获得积分10
28秒前
30秒前
Mike完成签到,获得积分10
32秒前
32秒前
33秒前
可爱的函函应助Zyyyh采纳,获得10
35秒前
Walden完成签到,获得积分10
36秒前
记忆里的阳光完成签到,获得积分10
36秒前
guyue完成签到,获得积分10
36秒前
38秒前
ok12发布了新的文献求助10
38秒前
41秒前
41秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977846
求助须知:如何正确求助?哪些是违规求助? 3521988
关于积分的说明 11210995
捐赠科研通 3259220
什么是DOI,文献DOI怎么找? 1799562
邀请新用户注册赠送积分活动 878412
科研通“疑难数据库(出版商)”最低求助积分说明 806888