Robust Model Predictive Control of Uncertain DC Microgrids Based on Improved Adaptive Consensus Algorithm

计算机科学 模型预测控制 自适应控制 算法 稳健性(进化) 鲁棒控制 控制理论(社会学) 控制(管理) 控制系统 人工智能 工程类 生物化学 电气工程 基因 化学
作者
Reza Samsami,Hamid Mirshekali,Rahman Dashti,Mohammad Mehdi Arefi,Hamid Reza Shaker
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (11): 13486-13497 被引量:10
标识
DOI:10.1109/tii.2024.3438244
摘要

DC microgrids (MGs) are one of the most critical components of smart grids, since they are responsible for providing high-quality power to dc consumers continuously. In this article, a novel robust model predictive control (RMPC) is proposed as the core element of the controller. The performance of the controller is highly dependent on the model of the power converter. The uncertainties in the parameters of the dc converters are taken into consideration to improve the microgrid's operational flexibility. The stability and robustness of the proposed RMPC strategy in the presence of uncertainty of microgrid elements are demonstrated. In order to coordinate numerous distributed generations in a microgrid, a distributed control approach based on an improved adaptive consensus (IAC) algorithm is recommended. This method requires a communication link among converters to transfer information. The systems are dynamically affected by many forms of communication topologies. The proposed IAC algorithm has the ability to be adaptively modified when the network topology changes by some operations such as plug-and-play (PnP) and link failure. The suggested RMPC and IAC methods are subjected to a robustness examination. To demonstrate the efficacy and resilience of the proposed control technique, many simulations of voltage tracking, load change, link failure, communication topology changes, and PnP operation in MATLAB/SimPowerSystems toolbox are performed. The statistics reveal that the proposed strategy outperforms other techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩凌发布了新的文献求助10
刚刚
思7发布了新的文献求助10
1秒前
star发布了新的文献求助10
3秒前
贾方硕发布了新的文献求助10
4秒前
WWL完成签到 ,获得积分10
4秒前
xiaole完成签到,获得积分10
5秒前
6秒前
Nothing完成签到,获得积分10
7秒前
宗听露完成签到,获得积分10
9秒前
光脚丫发布了新的文献求助20
9秒前
小周同学发布了新的文献求助10
10秒前
彭同学完成签到,获得积分10
10秒前
wweiweili完成签到 ,获得积分10
11秒前
11秒前
12秒前
科研通AI2S应助star采纳,获得10
12秒前
15秒前
NexusExplorer应助韩凌采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
刘智舰发布了新的文献求助10
16秒前
齐多达发布了新的文献求助10
16秒前
Akim应助WM采纳,获得10
16秒前
17秒前
18秒前
ww完成签到 ,获得积分10
18秒前
xiaosu完成签到,获得积分10
19秒前
rainny发布了新的文献求助10
20秒前
21秒前
21秒前
领导范儿应助憨憨采纳,获得10
21秒前
思源应助小周同学采纳,获得10
22秒前
22秒前
春实秋华发布了新的文献求助10
23秒前
冰柠橙夏发布了新的文献求助10
24秒前
24秒前
科研通AI2S应助wackykao采纳,获得10
24秒前
24秒前
DRYAN发布了新的文献求助10
24秒前
24秒前
司空悒发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520258
求助须知:如何正确求助?哪些是违规求助? 4612072
关于积分的说明 14531828
捐赠科研通 4549664
什么是DOI,文献DOI怎么找? 2493057
邀请新用户注册赠送积分活动 1474253
关于科研通互助平台的介绍 1445925