IDDF2024-ABS-0039 Gut microbiota fingerprinting as a potential tool for tracing the population’s geographical origin

肠道菌群 生物 基因组 相对物种丰度 随机森林 丰度(生态学) 人口 逻辑回归 动物 生态学 人口学 遗传学 人工智能 机器学习 计算机科学 免疫学 基因 社会学
作者
Li Luo,Bangwei Chen,Cai-rong Gao,Shida Zhu,Cuntai Zhang,Jia Li
标识
DOI:10.1136/gutjnl-2024-iddf.228
摘要

Background

Human gut microbiota are individual specificity and temporal stability that have revealed significant compositional differences across geographical provenience. Previous studies have focused on comparing gut microbiota diversity among individuals across continents. However, the gut microbiota variations among people residing in different regions within a province remain enigmatic.

Methods

Shotgun metagenomics sequencing was performed to analyze the gut microbiota of 381 unrelated Chinese Han individuals living in high-income city and traditional city of Hubei province. Propensity score matching was implemented to mitigate potential biases. The difference between two distinct regions was investigated using machine learning to identify the discriminatory ability of the gut microbiota.

Results

A total of 77 high-income city and 108 traditional city individuals were matched after propensity score matching. No significant differences were observed in the microbial α-diversity and β-diversity. The gut microbiota of high-income city individuals exhibited a higher relative abundance of Blautia genus. Conversely, the microbiota of traditional city people demonstrated a higher relative abundance of Lachnospira genus. Additionally, Roseburia faecis, Lachnospira pectinoschiza, Flavonifractor plautii, and other 9 species were found to be significantly different between the two regions. Furthermore, three prediction models based on the random forest, support vector machine, and logistic regression algorithms were constructed. Of the test samples, 86.1% could be classified with the random forest model based on 85 species, achieving an area under the receiver operating curve (AUC) of 0.895 (95% CI, 0.784-1.000).

Conclusions

The gut microbiota of individuals residing in the same province exhibits significant similarity, however, pronounced differences in bacterial assemblages were noted between individuals from high-income cities and traditional cities. We hypothesize that leveraging the machine learning algorithms to enhance the discrimination between two regional populations' microbiota can facilitate a deeper understanding of host-specific associations, which could offer valuable clinical assistance in diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
光撒盐完成签到,获得积分10
刚刚
飞快的珩完成签到,获得积分10
1秒前
能干冰露发布了新的文献求助10
2秒前
aaa0001984完成签到,获得积分0
2秒前
Coolkid2001完成签到,获得积分10
2秒前
蒋若风完成签到,获得积分10
2秒前
林夕完成签到,获得积分10
3秒前
一叶扁舟完成签到,获得积分10
3秒前
Azlne完成签到 ,获得积分10
3秒前
ivy完成签到 ,获得积分10
3秒前
Mumu发布了新的文献求助30
4秒前
村长热爱美丽完成签到 ,获得积分10
4秒前
机智采枫完成签到 ,获得积分10
5秒前
苗广山完成签到,获得积分10
5秒前
cxjie320完成签到,获得积分10
5秒前
xxxx完成签到,获得积分10
5秒前
斯文败类应助sheng采纳,获得10
5秒前
Bao完成签到 ,获得积分10
6秒前
黎明完成签到,获得积分20
6秒前
acb完成签到,获得积分10
7秒前
久念发布了新的文献求助10
7秒前
7秒前
shuaiBsen完成签到,获得积分10
9秒前
平常莹芝完成签到,获得积分10
9秒前
9秒前
SYLH应助甜叶菊采纳,获得10
9秒前
k123456应助light采纳,获得10
10秒前
HOXXXiii完成签到,获得积分10
10秒前
楚江南完成签到,获得积分10
11秒前
失眠醉易应助黎明采纳,获得20
11秒前
MQQ完成签到 ,获得积分10
11秒前
蓝色钢琴完成签到,获得积分10
11秒前
犹豫曲奇完成签到 ,获得积分10
11秒前
shim完成签到,获得积分10
12秒前
喜之郎完成签到,获得积分10
12秒前
哦哦哦完成签到 ,获得积分10
12秒前
18746005898完成签到 ,获得积分10
13秒前
taster发布了新的文献求助10
13秒前
单纯的海云完成签到 ,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359559
关于积分的说明 10403403
捐赠科研通 3077404
什么是DOI,文献DOI怎么找? 1690297
邀请新用户注册赠送积分活动 813734
科研通“疑难数据库(出版商)”最低求助积分说明 767781