骨关节炎
医学
人工智能
射线照相术
口腔正畸科
计算机科学
放射科
病理
替代医学
作者
Said Touahema,Imane Zaimi,Nabila Zrira,Nabil Ngote
出处
期刊:Applied sciences
[Multidisciplinary Digital Publishing Institute]
日期:2024-07-20
卷期号:14 (14): 6333-6333
被引量:2
摘要
Knee osteoarthritis is a chronic, progressive disease that rapidly progresses to severe stages. Reliable and accurate diagnosis, combined with the implementation of preventive lifestyle modifications before irreversible damage occurs, can effectively protect patients from becoming an inactive population. Artificial intelligence continues to play a pivotal role in computer-aided diagnosis with increasingly convincing accuracy, particularly in identifying the severity of knee osteoarthritis according to the Kellgren–Lawrence (KL) grading scale. The primary objective of this literature review is twofold. Firstly, it aims to provide a systematic analysis of the current literature on the main artificial intelligence models used recently to predict the severity of knee osteoarthritis from radiographic images. Secondly, it constitutes a critical review of the different methodologies employed and the key elements that have improved diagnostic performance. Ultimately, this study demonstrates that the considerable success of artificial intelligence systems will reinforce healthcare professionals’ confidence in the reliability of machine learning algorithms, facilitating more effective and faster treatment for patients afflicted with knee osteoarthritis. In order to achieve these objectives, a qualitative and quantitative analysis was conducted on 60 original research articles published between 1 January 2018 and 15 May 2024.
科研通智能强力驱动
Strongly Powered by AbleSci AI