Identification of novel dipeptidyl peptidase-4 inhibitory peptides from pea proteins: A combined in silico and in vitro study

生物信息学 二肽基肽酶 化学 体外 二肽基肽酶-4 IC50型 对接(动物) 生物化学 虚拟筛选 抑制性突触后电位 生物 药物发现 医学 护理部 神经科学 糖尿病 2型糖尿病 基因 内分泌学
作者
Mingkai Zhang,Ling Zhu,Hui Zhang,Xingguo Wang,Tongtong Liu,Xiguang Qi,Gangcheng Wu
出处
期刊:Food bioscience [Elsevier BV]
卷期号:56: 103374-103374 被引量:7
标识
DOI:10.1016/j.fbio.2023.103374
摘要

Dipeptidyl Peptidase 4 inhibitory peptides (DPP-4IPs) could exhibit their hypoglycemic effects by preventing Glucagon-like peptide 1 (GLP-1) degradation. However, identifying DPP-4IPs by traditional approach is laborious. Therefore, this study aims to rapidly identify DPP-4IPs by an in silico method. After in silico digestion, 509 peptide fragments were obtained from pea proteins. Subsequently, two novel DPP-4IPs SPGDVF and EPF with the in vitro half-maximal inhibitory concentrations (IC50) values of 277.61 and 406.47 μM were obtained by virtual screening and molecular docking. Interestingly, their in situ DPP-4 IC50 values in Caco-2 cells were increased to 918.82 and 1868.27 μM, respectively. Lineweaver−Burk double-reciprocal plots revealed that SPGDVF and EPF were competitive and mixed-type DPP-4IPs, respectively. Significantly, molecular docking suggested that SPGDVF could bond with DPP-4 active pockets. While EPF only bound outside of these active pockets, which may be the reason that EPF was weaker than SPGDVF in DPP-4 inhibition. Overall, this work provides a convenient strategy for identifying DPP-4IPs from food proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张晓倩发布了新的文献求助10
1秒前
右右发布了新的文献求助10
1秒前
炙热灰狼发布了新的文献求助10
1秒前
hubery发布了新的文献求助30
2秒前
4秒前
4秒前
7秒前
7秒前
Yanzhi完成签到,获得积分10
8秒前
右右完成签到,获得积分10
9秒前
左耳钉应助XS_QI采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
纸鹤完成签到,获得积分10
11秒前
DAYDAY完成签到,获得积分10
11秒前
孙某人发布了新的文献求助30
11秒前
不配.应助QIXIAO采纳,获得50
11秒前
王云骢完成签到,获得积分20
13秒前
纸鹤发布了新的文献求助10
13秒前
毛毛雨发布了新的文献求助30
13秒前
15秒前
NexusExplorer应助张晓倩采纳,获得10
17秒前
DAYDAY发布了新的文献求助20
18秒前
大模型应助纸鹤采纳,获得10
19秒前
大模型应助孙某人采纳,获得10
19秒前
20秒前
21秒前
22秒前
jiang完成签到,获得积分10
22秒前
23秒前
23秒前
团团完成签到,获得积分10
23秒前
科研通AI6应助桃子采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
crazy发布了新的文献求助10
25秒前
左耳钉应助XS_QI采纳,获得10
26秒前
欢呼的夏山发布了新的文献求助100
26秒前
27秒前
无与伦比发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277132
求助须知:如何正确求助?哪些是违规求助? 3805919
关于积分的说明 11924820
捐赠科研通 3452594
什么是DOI,文献DOI怎么找? 1893584
邀请新用户注册赠送积分活动 943645
科研通“疑难数据库(出版商)”最低求助积分说明 847513