SiMWiSense: Simultaneous Multi-Subject Activity Classification Through Wi-Fi Signals

计算机科学 主题(文档) 人工智能 模式识别(心理学) 万维网
作者
Khandaker Foysal Haque,Milin Zhang,Francesco Restuccia
标识
DOI:10.1109/wowmom57956.2023.00019
摘要

Recent advances in Wi-Fi sensing have ushered in a plethora of pervasive applications in home surveillance, remote healthcare, road safety, and home entertainment, among others.Most of the existing works are limited to the activity classification of a single human subject at a given time.Conversely, a more realistic scenario is to achieve simultaneous, multi-subject activity classification.The first key challenge in that context is that the number of classes grows exponentially with the number of subjects and activities.Moreover, it is known that Wi-Fi sensing systems struggle to adapt to new environments and subjects.To address both issues, we propose SiMWiSense, the first framework for simultaneous multi-subject activity classification based on Wi-Fi that generalizes to multiple environments and subjects.We address the scalability issue by using the Channel State Information (CSI) computed from the device positioned closest to the subject.We experimentally prove this intuition by confirming that the best accuracy is experienced when the CSI computed by the transceiver positioned closest to the subject is used for classification.To address the generalization issue, we develop a brand-new few-shot learning algorithm named Feature Reusable Embedding Learning (FREL).Through an extensive data collection campaign in 3 different environments and 3 subjects performing 20 different activities simultaneously, we demonstrate that SiMWiSense achieves classification accuracy of up to 97%, while FREL improves the accuracy by 85% in comparison to a traditional Convolutional Neural Network (CNN) and up to 20% when compared to the state-of-the-art few-shot embedding learning (FSEL), by using only 15 seconds of additional data for each class.For reproducibility purposes, we share our 1TB dataset and code repository 1 [1].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助yinying采纳,获得10
刚刚
baibaili发布了新的文献求助10
刚刚
yejian发布了新的文献求助10
刚刚
1秒前
1秒前
散光不近视完成签到,获得积分10
1秒前
1秒前
马克叔叔完成签到,获得积分10
2秒前
归尘发布了新的文献求助10
2秒前
小杭76应助想人陪的以云采纳,获得10
2秒前
3秒前
yeppp发布了新的文献求助10
3秒前
领导范儿应助张7采纳,获得10
3秒前
baobeikk发布了新的文献求助10
4秒前
feixingyuan完成签到,获得积分20
5秒前
超级铅笔完成签到,获得积分10
5秒前
5秒前
脑洞疼应助wr0112采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
dreamlightzy应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得30
6秒前
LYSM应助伶俐的绝施采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
Sam发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338701
求助须知:如何正确求助?哪些是违规求助? 4475775
关于积分的说明 13929452
捐赠科研通 4371050
什么是DOI,文献DOI怎么找? 2401660
邀请新用户注册赠送积分活动 1394683
关于科研通互助平台的介绍 1366468