亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Adversarial Time–Frequency Reconstruction Network for Unsupervised Anomaly Detection

计算机科学 离群值 频域 异常检测 人工智能 模式识别(心理学) 残余物 无监督学习 算法 计算机视觉
作者
Fan Jin,Zehao Wang,Huifeng Wu,Danfeng Sun,Jia Wu,Xin Lu
出处
期刊:Neural Networks [Elsevier]
卷期号:168: 44-56 被引量:26
标识
DOI:10.1016/j.neunet.2023.09.018
摘要

Detecting anomalies in massive volumes of multivariate time series data, particularly in the IoT domain, is critical for maintaining stable systems. Existing anomaly detection models based on reconstruction techniques face challenges in distinguishing normal and abnormal samples from unlabeled data, leading to performance degradation. Moreover, accurately reconstructing abnormal values and pinpointing anomalies remains a limitation. To address these issues, we introduce the Adversarial Time-Frequency Reconstruction Network for Unsupervised Anomaly Detection (ATF-UAD). ATF-UAD consists of a time reconstructor, a frequency reconstructor and a dual-view adversarial learning mechanism. The time reconstructor utilizes a parity sampling mechanism to weaken the dependency between neighboring points. Then attention mechanisms and graph convolutional networks (GCNs) are used to update the feature information for each point, which combines points with close feature relationships and dilutes the influence of abnormal points on normal points. The frequency reconstructor transforms the input sequence into the frequency domain using a Fourier transform and extracts the relationship between frequencies to reconstruct anomalous frequency bands. The dual-view adversarial learning mechanism aims to maximize the normal values in the reconstructed sequences and highlight anomalies and aid in their localization within the data. Through dual-view adversarial learning, ATF-UAD minimizes reconstructed value errors and maximizes the identification of residual outliers. We conducted extensive experiments on nine datasets from different domains, and ATF-UAD showed an average improvement of 6.94% in terms of F1 score compared to the state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
18秒前
Fairy完成签到,获得积分10
24秒前
36秒前
43秒前
stst发布了新的文献求助10
43秒前
stst完成签到,获得积分10
52秒前
59秒前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
烨枫晨曦完成签到,获得积分10
2分钟前
Zy189完成签到 ,获得积分10
2分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
我爱学习完成签到 ,获得积分10
3分钟前
3分钟前
认真的幻姬完成签到,获得积分10
3分钟前
4分钟前
4分钟前
于铁梅发布了新的文献求助10
4分钟前
于铁梅完成签到,获得积分10
4分钟前
阿尔法贝塔完成签到 ,获得积分10
5分钟前
treat4869完成签到 ,获得积分10
5分钟前
5分钟前
sino-ft完成签到,获得积分10
6分钟前
6分钟前
凌风完成签到,获得积分10
6分钟前
7分钟前
33发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
treat4869发布了新的文献求助10
7分钟前
充电宝应助33采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622323
关于积分的说明 14582538
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500225
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938