Advanced Porous Transport Layers for PEM Water Electrolyzers: Impact of the Interfacial and Bulk Properties of the PTLs on the Electrolyzers Performance

质子交换膜燃料电池 材料科学 催化作用 可再生能源 化学工程 阳极 制氢 接触电阻 多孔性 图层(电子) 纳米技术 复合材料 电极 化学 工程类 生物化学 物理化学 电气工程
作者
Zhiqiao Zeng,Stoyan Bliznakov,Leonard J. Bonville,Radenka Marić
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (36): 2056-2056 被引量:2
标识
DOI:10.1149/ma2023-01362056mtgabs
摘要

Proton exchange membrane water electrolyzers (PEMWEs) are widely seen as a crucial technology for integration with renewable energy sources to convert the generated electricity to green hydrogen, which is a clean and sustainable energy carrier. 1 However, their high capital cost and operational expenditures increase the production cost of green H 2 . 2 To make the technology economically competitive and boost its market penetration, DOE implemented targets of $2 kg -1 by 2025 and $1 kg -1 hydrogen by 2030. 3 The interfacial and bulk properties of the porous transport layer (PTL) are vital to the PEMWEs performance. 4–6 The optimal bulk properties of PTL improve cell performance mainly by improving the mass transport, while the reduced interfacial contact resistance between the anode catalyst layer and PTL, also enhances the catalyst utilization, allowing for a reduction of the precious metal loading. Further reduction of the interfacial contact resistance between the PTL and the catalyst layer is of crucial importance for increasing the efficiency of the PEMWEs, as well as for decreasing the production cost of green H 2 . In this study, an innovative reactive spray deposition technology (RSDT) is used to fabricate catalyst-coated membranes (CCMs) and catalyst-coated electrodes (CCEs) with ultra-low PGM loading (0.2 - 0.3 mg PGM cm -2 ) in both catalyst layers. The RSDT is a flame-based method that combines the synthesis and deposition of the catalyst in a single step, which results in a significant reduction of the MEA fabrication time and cost, respectively. 7–9 A set of commercially available Ti PTLs with various thicknesses and porosities have been used to assemble single cells as fabricated MEAs, and their performance has been assessed and compared to the state-of-the-art MEAs for PEMWEs. In addition, the impact of the thickness and porosity of the PTL, as well as the interfacial contact resistance between the PTL and catalyst layer for both single-cell PEMWE configurations (CCMs and CCEs) have been investigated. The performance loss in each cell configuration has been identified and discussed in detail. Furthermore, a standard accelerated stress test (AST) protocol has been applied to assess the durability of the RSDT-fabricated MEAs, with one order of magnitude lower PGM loading in their catalyst layers in comparison to the best reported in the literature MEAs for PEMWEs. Reference 1. Carmo, M. et al. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013). 2. Babic, U. et al. Critical Review — Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development Review — Identifying Critical Gaps for Polymer Electrolyte Water. (2017) doi:10.1149/2.1441704jes. 3. https://www.energy.gov/eere/fuelcells/hydrogen-shot 4. Peng, X. et al. Insights into Interfacial and Bulk Transport Phenomena Affecting Proton Exchange Membrane Water Electrolyzer Performance at Ultra-Low Iridium Loadings. Adv. Sci. 8, 1–9 (2021). 5. Bühler, M. et al. Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers. J. Mater. Chem. A 7, 26984–26995 (2019). 6. Kulkarni, D. et al. Elucidating effects of catalyst loadings and porous transport layer morphologies on the operation of proton exchange membrane water electrolyzers. Appl. Catal. B Environ. 308, 121213 (2022). 7. Zeng, Z. et al. Degradation Mechanisms in Advanced MEAs for PEM Water Electrolyzers Fabricated by Reactive Spray Deposition Technology. J. Electrochem. Soc. 169, 054536 (2022). 8. Mirshekari, G. et al. High-performance and cost-effective membrane electrode assemblies for advanced proton exchange membrane water electrolyzers: Long-term durability assessment. Int. J. Hydrogen Energy 46, 1526–1539 (2021). 9. Yu, H. et al. Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading. Appl. Catal. B Environ. 239, 133–146 (2018).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bokokoi发布了新的文献求助30
1秒前
1秒前
hammer_zhang发布了新的文献求助10
1秒前
1秒前
爹爹完成签到,获得积分10
2秒前
2秒前
王哈哈完成签到,获得积分10
2秒前
3秒前
小二郎应助积极冰淇淋采纳,获得10
3秒前
爆米花应助zouqian采纳,获得10
3秒前
糖七泡泡完成签到,获得积分10
3秒前
Merry完成签到,获得积分10
4秒前
赤赤完成签到,获得积分10
4秒前
爹爹发布了新的文献求助10
5秒前
5秒前
6秒前
小蘑菇应助乔垣结衣采纳,获得10
6秒前
6秒前
6秒前
hammer_zhang完成签到,获得积分10
6秒前
芋泥发布了新的文献求助10
7秒前
7秒前
hhw完成签到,获得积分10
8秒前
书生发布了新的文献求助30
8秒前
8秒前
9秒前
vante发布了新的文献求助10
10秒前
nb20发布了新的文献求助10
10秒前
小刘完成签到,获得积分10
10秒前
fenghy发布了新的文献求助10
10秒前
可乐加冰发布了新的文献求助10
11秒前
11秒前
打打应助兔子采纳,获得10
11秒前
bhkwxdxy完成签到,获得积分10
11秒前
huan发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
虫虫发布了新的文献求助100
13秒前
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842155
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533896
捐赠科研通 3104642
什么是DOI,文献DOI怎么找? 1709781
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 774029