Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物 化学 生物化学
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
贪玩果汁完成签到 ,获得积分10
1秒前
2秒前
斯文败类应助勤劳菠萝采纳,获得10
2秒前
上官若男应助浮生若梦采纳,获得10
2秒前
2秒前
周雨婷完成签到,获得积分10
3秒前
aifd完成签到,获得积分10
3秒前
春华秋实发布了新的文献求助10
3秒前
酷波er应助butterfly采纳,获得10
3秒前
4秒前
bkagyin应助白桃味的夏采纳,获得10
4秒前
科研通AI5应助波波采纳,获得30
4秒前
蓝幻雷完成签到,获得积分10
5秒前
思源应助SHERRIDEN_采纳,获得10
6秒前
7秒前
cjx完成签到,获得积分10
7秒前
万能图书馆应助Nicole采纳,获得10
7秒前
姜宝龙发布了新的文献求助10
7秒前
8秒前
Shirley发布了新的文献求助10
8秒前
9秒前
大模型应助冷静一江采纳,获得10
9秒前
schnappi发布了新的文献求助10
10秒前
小马甲应助春华秋实采纳,获得10
10秒前
11秒前
12秒前
13秒前
传奇3应助动听的雪曼采纳,获得10
13秒前
14秒前
打打应助kk采纳,获得10
14秒前
xiazhq完成签到,获得积分10
14秒前
yeah完成签到,获得积分20
15秒前
15秒前
Nicole发布了新的文献求助10
17秒前
浮生若梦发布了新的文献求助10
17秒前
狂野的锦程完成签到,获得积分10
18秒前
ZPH完成签到,获得积分10
18秒前
youhai发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791817
求助须知:如何正确求助?哪些是违规求助? 3336131
关于积分的说明 10279169
捐赠科研通 3052806
什么是DOI,文献DOI怎么找? 1675333
邀请新用户注册赠送积分活动 803378
科研通“疑难数据库(出版商)”最低求助积分说明 761208