Application of Supervised Descent Method for 3-D Gravity Data Focusing Inversion

反演(地质) 计算机科学 正规化(语言学) 梯度下降 计算 算法 反问题 数学优化 数学 人工智能 人工神经网络 地质学 古生物学 数学分析 构造盆地
作者
Rongzhe Zhang,Haoyuan He,Xintong Dong,Tonglin Li,Cai Liu,Xinze Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10
标识
DOI:10.1109/tgrs.2023.3312541
摘要

Three-dimensional gravity inversion is an effective method for extracting underground density distribution from gravity data. However, traditional deterministic gravity inversion methods suffer from problems such as skin effect, low computational accuracy, and poor efficiency. Therefore, we propose a three-dimensional gravity data focusing inversion algorithm based on the supervised descent method. Supervised descent method (SDM) is a non-linear optimization method based on the combination of machine learning and gradient descent method. In the offline phase, we construct a training set based on a priori information and iteratively learn a set of average descent directions between the initial model and the training model. In the online phase, we introduce a focused regularization into the prediction objective function. This addition aims to obtain a sharp boundary density model that conforms to the physical distribution. Additionally, we incorporate property boundary constraints in both the offline and online phases to control the upper and lower bounds of the density values to ensure consistency with reality. Model tests show that the proposed method can effectively overcome skin effect, improve the resolution of gravity inversion. Moreover, the construction of the training set of the proposed method is less affected by prior information, and it has strong generalization ability. Furthermore, the method does not require solving large-scale linear equations, accelerating the inversion computation speed and having strong noise resistance. Field examples demonstrate that this method has good potential for improving the accuracy and efficiency of actual gravity data inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨梦松发布了新的文献求助200
1秒前
bear完成签到,获得积分0
1秒前
端庄的小翠完成签到 ,获得积分10
1秒前
赘婿应助热心的皮采纳,获得10
1秒前
乐乐应助Qq采纳,获得10
1秒前
zhhui完成签到,获得积分10
2秒前
2秒前
Herry发布了新的文献求助10
3秒前
3秒前
3秒前
清欢完成签到 ,获得积分10
4秒前
4秒前
lc发布了新的文献求助10
4秒前
Zczzx发布了新的文献求助10
5秒前
思源应助生动的映菱采纳,获得10
5秒前
朴素阁完成签到,获得积分20
5秒前
5秒前
热心的皮皮虾完成签到,获得积分10
5秒前
5秒前
无妄生欢发布了新的文献求助10
5秒前
bkagyin应助双马尾小男生2采纳,获得10
5秒前
leslie完成签到,获得积分10
6秒前
laifu完成签到,获得积分10
6秒前
爱笑灵竹完成签到,获得积分10
7秒前
小林不熬夜完成签到,获得积分10
7秒前
7秒前
Wk_Ye完成签到,获得积分10
7秒前
7秒前
8秒前
ccccc完成签到,获得积分10
9秒前
9秒前
爱笑灵竹发布了新的文献求助10
9秒前
李健应助rockman采纳,获得10
9秒前
贵贵发布了新的文献求助10
9秒前
GWT发布了新的文献求助10
9秒前
10秒前
kk完成签到 ,获得积分10
11秒前
11秒前
11秒前
π1完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407