MnEdgeNet for accurate decomposition of mixed oxidation states for Mn XAS and EELS L2,3 edges without reference and calibration

X射线吸收光谱法 价(化学) 吸收光谱法 氧化态 谱线 光谱学 基态 化学 电子结构 分析化学(期刊) 偏移量(计算机科学) 计算机科学 材料科学 物理 原子物理学 光学 计算化学 天文 生物化学 程序设计语言 有机化学 催化作用 量子力学 色谱法
作者
Zhengran Ji,Mike Hu,Huolin L. Xin
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:9
标识
DOI:10.1038/s41598-023-40616-5
摘要

Abstract Accurate decomposition of the mixed Mn oxidation states is highly important for characterizing the electronic structures, charge transfer and redox centers for electronic, and electrocatalytic and energy storage materials that contain Mn. Electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (XAS) measurements of the Mn L2,3 edges are widely used for this purpose. To date, although the measurements of the Mn L2,3 edges are straightforward given the sample is prepared properly, an accurate decomposition of the mix valence states of Mn remains non-trivial. For both EELS and XAS, 2+, 3+, and 4+ reference spectra need to be taken on the same instrument/beamline and preferably in the same experimental session because the instrumental resolution and the energy axis offset could vary from one session to another. To circumvent this hurdle, in this study, we adopted a deep learning approach and developed a calibration-free and reference-free method to decompose the oxidation state of Mn L2,3 edges for both EELS and XAS. A deep learning regression model is trained to accurately predict the composition of the mix valence state of Mn. To synthesize physics-informed and ground-truth labeled training datasets, we created a forward model that takes into account plural scattering, instrumentation broadening, noise, and energy axis offset. With that, we created a 1.2 million-spectrum database with 1-by-3 oxidation state composition ground truth vectors. The library includes a sufficient variety of data including both EELS and XAS spectra. By training on this large database, our convolutional neural network achieves 85% accuracy on the validation dataset. We tested the model and found it is robust against noise (down to PSNR of 10) and plural scattering (up to t/λ = 1). We further validated the model against spectral data that were not used in training. In particular, the model shows high accuracy and high sensitivity for the decomposition of Mn 3 O 4 , MnO, Mn 2 O 3 , and MnO 2 . The accurate decomposition of Mn 3 O 4 experimental data shows the model is quantitatively correct and can be deployed for real experimental data. Our model will not only be a valuable tool to researchers and material scientists but also can assist experienced electron microscopists and synchrotron scientists in the automated analysis of Mn L edge data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗑cp完成签到 ,获得积分10
刚刚
听鸥发布了新的文献求助10
刚刚
1秒前
斯文败类应助niekyang采纳,获得10
1秒前
haha完成签到,获得积分10
2秒前
kkkkk完成签到,获得积分10
3秒前
3秒前
南阳宋仲基完成签到,获得积分10
3秒前
koukeika完成签到,获得积分10
3秒前
cwm发布了新的文献求助10
4秒前
韩永利完成签到,获得积分10
4秒前
xx发布了新的文献求助10
4秒前
郝富完成签到,获得积分0
4秒前
5秒前
方方完成签到,获得积分10
5秒前
6秒前
Genius发布了新的文献求助10
6秒前
6秒前
学术混子完成签到,获得积分10
7秒前
7秒前
7秒前
茕凡桃七完成签到,获得积分10
7秒前
kangnakangna完成签到,获得积分10
8秒前
8秒前
xx完成签到 ,获得积分10
8秒前
bkagyin应助adaasd采纳,获得10
8秒前
韩永利发布了新的文献求助10
8秒前
852应助贾潮雨采纳,获得10
8秒前
stqs发布了新的文献求助10
8秒前
爱尚完成签到,获得积分10
9秒前
852应助qiqi采纳,获得10
9秒前
学fei了吗完成签到,获得积分10
9秒前
aaaa完成签到,获得积分10
10秒前
tttp完成签到,获得积分10
10秒前
11秒前
眯眯眼的士萧完成签到 ,获得积分10
11秒前
痛苦啊完成签到,获得积分10
11秒前
magic发布了新的文献求助10
11秒前
11秒前
聪慧皓轩完成签到,获得积分20
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946605
求助须知:如何正确求助?哪些是违规求助? 3491745
关于积分的说明 11062227
捐赠科研通 3222706
什么是DOI,文献DOI怎么找? 1781030
邀请新用户注册赠送积分活动 866089
科研通“疑难数据库(出版商)”最低求助积分说明 800126