A lightweight IoT intrusion detection model based on improved BERT-of-Theseus

计算机科学 入侵检测系统 物联网 软件部署 人工智能 网络安全 深度学习 机器学习 数据挖掘 计算机安全 操作系统
作者
Zhendong Wang,Jingfei Li,Shuxin Yang,Xiao Luo,Dahai Li,Soroosh Mahmoodi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122045-122045 被引量:74
标识
DOI:10.1016/j.eswa.2023.122045
摘要

The proliferation of Internet of Things (IoT) technology has resulted in an increase in security vulnerabilities associated with the interconnectivity of IoT devices. As a result, there is a need for intrusion detection mechanisms that can effectively detect attacks on IoT security vulnerabilities. However, due to the resource constraints of IoT deployment devices, intrusion detection schemes must be customized to meet the specific demands of the IoT environment. In this study, we propose a knowledge-distillation-based IoT intrusion detection model named BT-TPF, which is capable of detecting network attacks encountered by IoT devices in an IoT environment with limited computing resources. The proposed BT-TPF model leverages a Siamese network for feature dimensionality reduction of complex high-dimensional network traffic data. Additionally, it employs a large-scale Vision Transformer as a teacher model to guide a small-scale Poolformer model during training, before deploying the trained Poolformer model as a classifier to detect network intrusion traffic. Through knowledge distillation, the final small model obtained in this paper only requires a minimum of 788 parameters, reducing the number of parameters by approximately 90% compared to the large model before knowledge distillation, while maintaining high detection accuracy. Experimental results show that the BT-TPF model achieves over 99% accuracy on both the CIC-IDS2017 and TON_IoT datasets. Furthermore, it exhibits significant advantages compared to traditional Deep Learning methods and recent state-of-the-art models, as evidenced by various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KAOKAO完成签到,获得积分10
刚刚
李爱国应助hui采纳,获得10
刚刚
xr发布了新的文献求助10
1秒前
dew应助库里采纳,获得10
1秒前
zyjsunye发布了新的文献求助10
2秒前
4秒前
一一完成签到,获得积分20
4秒前
高高树叶完成签到,获得积分10
5秒前
大山完成签到,获得积分10
5秒前
why发布了新的文献求助10
6秒前
6秒前
541完成签到 ,获得积分10
7秒前
ZhaoW发布了新的文献求助10
7秒前
yaoyh_gc完成签到,获得积分10
8秒前
XCL发布了新的文献求助10
8秒前
小二郎应助xr采纳,获得10
9秒前
9秒前
Conccuc完成签到,获得积分10
9秒前
沉静胜发布了新的文献求助10
9秒前
10秒前
浮游应助科研通管家采纳,获得10
12秒前
sevenhill应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
噼里啪啦发布了新的文献求助10
12秒前
12秒前
月蚀六花发布了新的文献求助10
13秒前
why完成签到,获得积分10
14秒前
sule完成签到,获得积分10
15秒前
虚心青梦发布了新的文献求助10
16秒前
zhangjw完成签到 ,获得积分10
17秒前
sule发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478271
求助须知:如何正确求助?哪些是违规求助? 4579994
关于积分的说明 14371755
捐赠科研通 4508300
什么是DOI,文献DOI怎么找? 2470593
邀请新用户注册赠送积分活动 1457382
关于科研通互助平台的介绍 1431307