A lightweight IoT intrusion detection model based on improved BERT-of-Theseus

计算机科学 入侵检测系统 物联网 软件部署 人工智能 网络安全 深度学习 机器学习 数据挖掘 计算机安全 操作系统
作者
Zhendong Wang,Jingfei Li,Shuxin Yang,Xiao Luo,Dahai Li,Soroosh Mahmoodi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122045-122045 被引量:27
标识
DOI:10.1016/j.eswa.2023.122045
摘要

The proliferation of Internet of Things (IoT) technology has resulted in an increase in security vulnerabilities associated with the interconnectivity of IoT devices. As a result, there is a need for intrusion detection mechanisms that can effectively detect attacks on IoT security vulnerabilities. However, due to the resource constraints of IoT deployment devices, intrusion detection schemes must be customized to meet the specific demands of the IoT environment. In this study, we propose a knowledge-distillation-based IoT intrusion detection model named BT-TPF, which is capable of detecting network attacks encountered by IoT devices in an IoT environment with limited computing resources. The proposed BT-TPF model leverages a Siamese network for feature dimensionality reduction of complex high-dimensional network traffic data. Additionally, it employs a large-scale Vision Transformer as a teacher model to guide a small-scale Poolformer model during training, before deploying the trained Poolformer model as a classifier to detect network intrusion traffic. Through knowledge distillation, the final small model obtained in this paper only requires a minimum of 788 parameters, reducing the number of parameters by approximately 90% compared to the large model before knowledge distillation, while maintaining high detection accuracy. Experimental results show that the BT-TPF model achieves over 99% accuracy on both the CIC-IDS2017 and TON_IoT datasets. Furthermore, it exhibits significant advantages compared to traditional Deep Learning methods and recent state-of-the-art models, as evidenced by various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
1秒前
wangchen发布了新的文献求助10
5秒前
沉静河马完成签到 ,获得积分10
5秒前
冰魂应助万物更始采纳,获得10
8秒前
8秒前
脑洞疼应助高兴璎采纳,获得10
9秒前
舒适行云完成签到,获得积分10
10秒前
yyds发布了新的文献求助10
11秒前
莫比乌斯发布了新的文献求助30
14秒前
FashionBoy应助无私的小松鼠采纳,获得10
16秒前
吃饭了没发布了新的文献求助20
16秒前
SYLH应助An_Jing采纳,获得10
17秒前
shijietu完成签到,获得积分10
17秒前
17秒前
科研学术完成签到,获得积分10
19秒前
W29完成签到,获得积分10
19秒前
tang123完成签到,获得积分10
20秒前
21秒前
科研通AI5应助想要发文章采纳,获得10
23秒前
VDC应助ran采纳,获得30
23秒前
LL完成签到 ,获得积分10
24秒前
俭朴的帆布鞋完成签到,获得积分20
25秒前
30秒前
yyy发布了新的文献求助10
30秒前
所所应助iamleopeng采纳,获得10
30秒前
星辰大海应助yyds采纳,获得10
31秒前
Orange应助虚心的冷雪采纳,获得10
31秒前
32秒前
鸽子发布了新的文献求助10
34秒前
34秒前
37秒前
wangchen完成签到,获得积分10
38秒前
38秒前
38秒前
lucky发布了新的文献求助10
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800254
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325792
捐赠科研通 3061969
什么是DOI,文献DOI怎么找? 1680716
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557