亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Major Adverse Cardiovascular Events Following Carotid Endarterectomy Using Machine Learning

医学 布里氏评分 接收机工作特性 颈动脉内膜切除术 曲线下面积 冲程(发动机) 逻辑回归 不利影响 围手术期 心肌梗塞 公制(单位) 急诊医学 内科学 外科 机器学习 颈动脉 机械工程 运营管理 计算机科学 工程类 经济
作者
Ben Li,Raj Verma,Derek Beaton,Hani Tamim,Mohamad A. Hussain,Jamal J. Hoballah,Douglas S. Lee,Duminda N. Wijeysundera,Charles de Mestral,Muhammad Mamdani,Mohammed Al‐Omran
出处
期刊:Journal of the American Heart Association [Ovid Technologies (Wolters Kluwer)]
卷期号:12 (20) 被引量:1
标识
DOI:10.1161/jaha.123.030508
摘要

Background Carotid endarterectomy (CEA) is a major vascular operation for stroke prevention that carries significant perioperative risks; however, outcome prediction tools remain limited. The authors developed machine learning algorithms to predict outcomes following CEA. Methods and Results The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent CEA between 2011 and 2021. Input features included 36 preoperative demographic/clinical variables. The primary outcome was 30-day major adverse cardiovascular events (composite of stroke, myocardial infarction, or death). The data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using preoperative features. The primary metric for evaluating model performance was area under the receiver operating characteristic curve. Model robustness was evaluated with calibration plot and Brier score. Overall, 38 853 patients underwent CEA during the study period. Thirty-day major adverse cardiovascular events occurred in 1683 (4.3%) patients. The best performing prediction model was XGBoost, achieving an area under the receiver operating characteristic curve of 0.91 (95% CI, 0.90-0.92). In comparison, logistic regression had an area under the receiver operating characteristic curve of 0.62 (95% CI, 0.60-0.64), and existing tools in the literature demonstrate area under the receiver operating characteristic curve values ranging from 0.58 to 0.74. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.02. The strongest predictive feature in our algorithm was carotid symptom status. Conclusions The machine learning models accurately predicted 30-day outcomes following CEA using preoperative data and performed better than existing tools. They have potential for important utility in guiding risk-mitigation strategies to improve outcomes for patients being considered for CEA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanwan524完成签到 ,获得积分10
12秒前
CodeCraft应助phd采纳,获得10
19秒前
充电宝应助phd采纳,获得10
27秒前
34秒前
sailingluwl完成签到,获得积分10
37秒前
阿泽发布了新的文献求助10
38秒前
大个应助phd采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Una完成签到,获得积分10
1分钟前
矮小的向雪完成签到 ,获得积分10
1分钟前
phd发布了新的文献求助10
1分钟前
花开富贵完成签到 ,获得积分10
1分钟前
2分钟前
lei发布了新的文献求助10
2分钟前
Kevin完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
rose发布了新的文献求助20
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
lsl应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
卷卷完成签到 ,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
小b亮完成签到 ,获得积分10
4分钟前
Echo完成签到,获得积分10
4分钟前
奇奇怪怪完成签到,获得积分10
4分钟前
fanhuaxuejin完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
yhh完成签到 ,获得积分10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004