亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Major Adverse Cardiovascular Events Following Carotid Endarterectomy Using Machine Learning

医学 布里氏评分 接收机工作特性 颈动脉内膜切除术 曲线下面积 冲程(发动机) 逻辑回归 不利影响 围手术期 心肌梗塞 公制(单位) 急诊医学 内科学 外科 机器学习 颈动脉 机械工程 运营管理 计算机科学 工程类 经济
作者
Ben Li,Raj Verma,Derek Beaton,Hani Tamim,Mohamad A. Hussain,Jamal J. Hoballah,Douglas S. Lee,Duminda N. Wijeysundera,Charles de Mestral,Muhammad Mamdani,Mohammed Al‐Omran
出处
期刊:Journal of the American Heart Association [Wiley]
卷期号:12 (20) 被引量:1
标识
DOI:10.1161/jaha.123.030508
摘要

Background Carotid endarterectomy (CEA) is a major vascular operation for stroke prevention that carries significant perioperative risks; however, outcome prediction tools remain limited. The authors developed machine learning algorithms to predict outcomes following CEA. Methods and Results The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent CEA between 2011 and 2021. Input features included 36 preoperative demographic/clinical variables. The primary outcome was 30-day major adverse cardiovascular events (composite of stroke, myocardial infarction, or death). The data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using preoperative features. The primary metric for evaluating model performance was area under the receiver operating characteristic curve. Model robustness was evaluated with calibration plot and Brier score. Overall, 38 853 patients underwent CEA during the study period. Thirty-day major adverse cardiovascular events occurred in 1683 (4.3%) patients. The best performing prediction model was XGBoost, achieving an area under the receiver operating characteristic curve of 0.91 (95% CI, 0.90-0.92). In comparison, logistic regression had an area under the receiver operating characteristic curve of 0.62 (95% CI, 0.60-0.64), and existing tools in the literature demonstrate area under the receiver operating characteristic curve values ranging from 0.58 to 0.74. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.02. The strongest predictive feature in our algorithm was carotid symptom status. Conclusions The machine learning models accurately predicted 30-day outcomes following CEA using preoperative data and performed better than existing tools. They have potential for important utility in guiding risk-mitigation strategies to improve outcomes for patients being considered for CEA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
emmaaima关注了科研通微信公众号
2秒前
3秒前
8秒前
13秒前
JamesPei应助儒雅的胡萝卜采纳,获得10
15秒前
18秒前
熊熊完成签到 ,获得积分10
19秒前
delll发布了新的文献求助10
19秒前
emmaaima发布了新的文献求助10
23秒前
hanawang应助ceeray23采纳,获得20
32秒前
莫名是个小疯子完成签到,获得积分10
45秒前
Jasper应助delll采纳,获得10
50秒前
59秒前
delll完成签到,获得积分10
1分钟前
耍酷蘑菇发布了新的文献求助10
1分钟前
CodeCraft应助ceeray23采纳,获得20
1分钟前
SciGPT应助qpp采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
小马甲应助灰灰采纳,获得20
1分钟前
1分钟前
山药汤完成签到 ,获得积分10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
我爱学习完成签到,获得积分10
2分钟前
2分钟前
嘎嘎嘎完成签到,获得积分10
2分钟前
3分钟前
归海浩阑完成签到,获得积分10
3分钟前
3分钟前
CodeCraft应助夏夏夏夏夏夏采纳,获得10
3分钟前
3分钟前
GU由于求助违规,被管理员扣积分10
3分钟前
hanawang应助轻松板栗采纳,获得30
3分钟前
yangyang给yangyang的求助进行了留言
3分钟前
null给GU的求助进行了留言
3分钟前
3分钟前
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116192
求助须知:如何正确求助?哪些是违规求助? 4322907
关于积分的说明 13469685
捐赠科研通 4155108
什么是DOI,文献DOI怎么找? 2276985
邀请新用户注册赠送积分活动 1278855
关于科研通互助平台的介绍 1216881