Predicting Major Adverse Cardiovascular Events Following Carotid Endarterectomy Using Machine Learning

医学 布里氏评分 接收机工作特性 颈动脉内膜切除术 曲线下面积 冲程(发动机) 逻辑回归 不利影响 围手术期 心肌梗塞 公制(单位) 急诊医学 内科学 外科 机器学习 颈动脉 机械工程 运营管理 计算机科学 工程类 经济
作者
Ben Li,Raj Verma,Derek Beaton,Hani Tamim,Mohamad A. Hussain,Jamal J. Hoballah,Douglas S. Lee,Duminda N. Wijeysundera,Charles de Mestral,Muhammad Mamdani,Mohammed Al‐Omran
出处
期刊:Journal of the American Heart Association [Wiley]
卷期号:12 (20) 被引量:1
标识
DOI:10.1161/jaha.123.030508
摘要

Background Carotid endarterectomy (CEA) is a major vascular operation for stroke prevention that carries significant perioperative risks; however, outcome prediction tools remain limited. The authors developed machine learning algorithms to predict outcomes following CEA. Methods and Results The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent CEA between 2011 and 2021. Input features included 36 preoperative demographic/clinical variables. The primary outcome was 30-day major adverse cardiovascular events (composite of stroke, myocardial infarction, or death). The data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using preoperative features. The primary metric for evaluating model performance was area under the receiver operating characteristic curve. Model robustness was evaluated with calibration plot and Brier score. Overall, 38 853 patients underwent CEA during the study period. Thirty-day major adverse cardiovascular events occurred in 1683 (4.3%) patients. The best performing prediction model was XGBoost, achieving an area under the receiver operating characteristic curve of 0.91 (95% CI, 0.90-0.92). In comparison, logistic regression had an area under the receiver operating characteristic curve of 0.62 (95% CI, 0.60-0.64), and existing tools in the literature demonstrate area under the receiver operating characteristic curve values ranging from 0.58 to 0.74. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.02. The strongest predictive feature in our algorithm was carotid symptom status. Conclusions The machine learning models accurately predicted 30-day outcomes following CEA using preoperative data and performed better than existing tools. They have potential for important utility in guiding risk-mitigation strategies to improve outcomes for patients being considered for CEA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追风少年完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
5秒前
北海发布了新的文献求助10
5秒前
我是老大应助加顿土豆采纳,获得10
5秒前
不敢自称科研人完成签到,获得积分10
6秒前
WXB发布了新的文献求助10
7秒前
一木发布了新的文献求助10
7秒前
8秒前
我是老大应助MOhy采纳,获得10
8秒前
干净水彤发布了新的文献求助10
10秒前
clelo发布了新的文献求助10
10秒前
12秒前
故里完成签到,获得积分10
12秒前
满眼星辰发布了新的文献求助10
12秒前
小静完成签到,获得积分10
12秒前
13秒前
15秒前
16秒前
桐桐应助木木采纳,获得10
17秒前
clelo完成签到,获得积分10
17秒前
bkagyin应助东方天奇采纳,获得10
18秒前
SYLH应助繁荣的从灵采纳,获得10
19秒前
19秒前
20秒前
嘟嘟嘟嘟完成签到,获得积分10
20秒前
xin完成签到 ,获得积分10
21秒前
21秒前
yangz10完成签到 ,获得积分20
21秒前
maox1aoxin应助去看海嘛采纳,获得50
22秒前
嘞是举仔发布了新的文献求助10
24秒前
25秒前
2877321934发布了新的文献求助10
26秒前
bkagyin应助满眼星辰采纳,获得10
26秒前
xifanfan完成签到 ,获得积分10
27秒前
CodeCraft应助嘞是举仔采纳,获得10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814988
求助须知:如何正确求助?哪些是违规求助? 3359044
关于积分的说明 10399787
捐赠科研通 3076649
什么是DOI,文献DOI怎么找? 1689918
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767641