已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial neural network in optimization of bioactive compound extraction: recent trends and performance comparison with response surface methodology

化学 响应面法 人工神经网络 萃取(化学) 色谱法 人工智能 计算机科学
作者
V. Subramani,Vidisha Tomer,Gunji Bala Murali,P. S. Mansingh
出处
期刊:Analytical Sciences [Springer Nature]
被引量:3
标识
DOI:10.1007/s44211-024-00681-w
摘要

Plant products and its by-products are rich source of bioactive compounds like antioxidants, flavonoids, phenolics, pigments and phytochemicals. Bioactive compound's health-promoting properties are well studied. However, optimal extraction of bioactive compounds is a complex, labour- and time-intensive process. It is also highly sensitive to experimental variables. Predicting output variables can reduce the experimental work and has positive environmental impact. Various tools such as Response Surface Methodology (RSM), Mathematical modelling have been commonly used for optimization and predictive modelling of the extraction process. Although mathematical modelling and RSM are efficient, recent studies have used Artificial Neural Network (ANN) which is more efficient and accurate and can perform extensive predictions with high accuracy. The manuscript focuses on current trends of ANN application in optimizing the extraction of bioactive compounds. In this study, ANN and RSM have been compared in terms of their performances in optimizing and modelling the extraction of bioactive compounds from herbs, medicinal plants, fruit, vegetables, and their by-products. The findings from the literature indicate that efficiency of ANN was superior to RSM. Future researches can focus on use of ANN in industrial optimization experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助立志做学霸采纳,获得10
1秒前
3秒前
3秒前
mylian完成签到,获得积分20
3秒前
郭子仪发布了新的文献求助10
6秒前
7秒前
7秒前
12应助幸福大白采纳,获得30
8秒前
12应助幸福大白采纳,获得30
8秒前
科研通AI5应助幸福大白采纳,获得10
8秒前
科研通AI5应助幸福大白采纳,获得10
8秒前
mylian发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
陆帅帅他大伯关注了科研通微信公众号
11秒前
乐乐应助李_采纳,获得10
12秒前
潇湘雪月发布了新的文献求助10
13秒前
xzc发布了新的文献求助10
14秒前
pass发布了新的文献求助10
15秒前
苏木希完成签到,获得积分10
15秒前
黑白完成签到,获得积分10
15秒前
16秒前
斯文败类应助xzc采纳,获得10
19秒前
熙熙完成签到,获得积分10
19秒前
20秒前
lmei完成签到 ,获得积分10
22秒前
苦瓜大王发布了新的文献求助10
22秒前
25秒前
25秒前
27秒前
27秒前
27秒前
27秒前
SciGPT应助聪明的雨南采纳,获得10
28秒前
垃圾桶完成签到 ,获得积分10
31秒前
今后应助xiaowu采纳,获得10
32秒前
李_发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4917109
求助须知:如何正确求助?哪些是违规求助? 4190446
关于积分的说明 13014237
捐赠科研通 3959823
什么是DOI,文献DOI怎么找? 2170983
邀请新用户注册赠送积分活动 1189028
关于科研通互助平台的介绍 1097070