Artificial neural network in optimization of bioactive compound extraction: recent trends and performance comparison with response surface methodology

化学 响应面法 人工神经网络 萃取(化学) 色谱法 人工智能 计算机科学
作者
V. Subramani,Vidisha Tomer,Gunji Bala Murali,P. S. Mansingh
出处
期刊:Analytical Sciences [Springer Nature]
标识
DOI:10.1007/s44211-024-00681-w
摘要

Plant products and its by-products are rich source of bioactive compounds like antioxidants, flavonoids, phenolics, pigments and phytochemicals. Bioactive compound's health-promoting properties are well studied. However, optimal extraction of bioactive compounds is a complex, labour- and time-intensive process. It is also highly sensitive to experimental variables. Predicting output variables can reduce the experimental work and has positive environmental impact. Various tools such as Response Surface Methodology (RSM), Mathematical modelling have been commonly used for optimization and predictive modelling of the extraction process. Although mathematical modelling and RSM are efficient, recent studies have used Artificial Neural Network (ANN) which is more efficient and accurate and can perform extensive predictions with high accuracy. The manuscript focuses on current trends of ANN application in optimizing the extraction of bioactive compounds. In this study, ANN and RSM have been compared in terms of their performances in optimizing and modelling the extraction of bioactive compounds from herbs, medicinal plants, fruit, vegetables, and their by-products. The findings from the literature indicate that efficiency of ANN was superior to RSM. Future researches can focus on use of ANN in industrial optimization experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Hehhhh完成签到,获得积分10
4秒前
今后应助LLLLLLL采纳,获得10
5秒前
欣慰书易完成签到,获得积分10
5秒前
juziyaya应助kiara采纳,获得50
6秒前
阿松发布了新的文献求助10
7秒前
八九寺完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
冰魂应助斯人采纳,获得20
9秒前
慈祥的冰淇淋完成签到,获得积分10
10秒前
圆圆发布了新的文献求助10
11秒前
小二郎应助元锦程采纳,获得10
11秒前
何果果完成签到,获得积分10
11秒前
Uuuu关注了科研通微信公众号
11秒前
12秒前
Ace关闭了Ace文献求助
13秒前
13秒前
13秒前
Aaron_Chia发布了新的文献求助10
13秒前
小王同学完成签到,获得积分10
14秒前
无算浮白发布了新的文献求助10
15秒前
丘比特应助阿松采纳,获得10
15秒前
科研通AI5应助Cling采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得20
17秒前
烟花应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
syyy发布了新的文献求助10
17秒前
lucky应助科研通管家采纳,获得10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802150
求助须知:如何正确求助?哪些是违规求助? 3347923
关于积分的说明 10335538
捐赠科研通 3063893
什么是DOI,文献DOI怎么找? 1682275
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763977