Advancing COVID-19 Treatment: The Role of Non-covalent Inhibitors Unveiled by Integrated Machine Learning and Network Pharmacology

计算生物学 药物重新定位 可药性 赫尔格 药物发现 2019年冠状病毒病(COVID-19) 对接(动物) 药理学 生物 计算机科学 生物信息学 医学 药品 传染病(医学专业) 生物化学 疾病 生物物理学 钾通道 基因 病理 护理部
作者
Shayan Qadir,Fahad M. Alshabrmi,Faris F. Aba Alkhayl,Aqsa Muzammil,Snehpreet Kaur,Abdur Rehman
出处
期刊:Current Pharmaceutical Design [Bentham Science Publishers]
卷期号:31
标识
DOI:10.2174/0113816128342951241210175314
摘要

Introduction: The COVID-19 pandemic has necessitated rapid advancements in therapeutic discovery. This study presents an integrated approach combining machine learning (ML) and network pharmacology to identify potential non-covalent inhibitors against pivotal proteins in COVID-19 pathogenesis, specifically B-cell lymphoma 2 (BCL2) and Epidermal Growth Factor Receptor (EGFR). Method: Employing a dataset of 13,107 compounds, ML algorithms such as k-Nearest Neighbors (kNN), Support Vector Machine (SVM), Random Forest (RF), and Naïve Bayes (NB) were utilized for screening and predicting active inhibitors based on molecular features. Molecular docking and molecular dynamics simulations, conducted over a 100 nanosecond period, enhanced the ML-based screening by providing insights into the binding affinities and interaction dynamics with BCL2 and EGFR. Network pharmacology analysis identified these proteins as hub targets within the COVID-19 protein-protein interaction network, highlighting their roles in apoptosis regulation and cellular signaling. Results: The identified inhibitors exhibited strong binding affinities, suggesting potential efficacy in disrupting viral life cycles and impeding disease progression. Comparative analysis with existing literature affirmed the relevance of BCL2 and EGFR in COVID-19 therapy and underscored the novelty of integrating network pharmacology with ML. This multidisciplinary approach establishes a framework for emerging pathogen treatments and advocates for subsequent in vitro and in vivo validation, emphasizing a multi-targeted drug design strategy against viral adaptability. Conclusion: This study's findings are crucial for the ongoing development of therapeutic agents against COVID-19, leveraging computational and network-based strategies. conclusion: This multidisciplinary approach establishes a framework for emerging pathogen treatments and advocates for subsequent in vitro and in vivo validation. The findings emphasize a multi-targeted drug design strategy against viral adaptability, contributing significantly to the ongoing development of therapeutic agents against COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助开心的茗茗采纳,获得10
1秒前
139完成签到 ,获得积分0
4秒前
Kiling完成签到 ,获得积分10
4秒前
Zy完成签到,获得积分20
5秒前
梅子发布了新的文献求助10
6秒前
6秒前
管道工给管道工的求助进行了留言
7秒前
7秒前
可爱的函函应助nina采纳,获得10
9秒前
9秒前
9秒前
嗯嗯发布了新的文献求助10
11秒前
王海艳发布了新的文献求助10
11秒前
水水完成签到,获得积分10
11秒前
Zhao发布了新的文献求助30
11秒前
天天快乐应助读书的时候采纳,获得10
12秒前
12秒前
aslink完成签到,获得积分10
13秒前
朴素如之完成签到,获得积分10
13秒前
深情安青应助Lynn采纳,获得10
14秒前
15秒前
muomuo发布了新的文献求助20
16秒前
keen完成签到 ,获得积分10
17秒前
17秒前
wuxianhui发布了新的文献求助10
17秒前
打卡下班应助jiang采纳,获得10
20秒前
20秒前
CodeCraft应助123采纳,获得10
20秒前
继往开来完成签到,获得积分10
21秒前
加油搬砖发布了新的文献求助10
21秒前
zou发布了新的文献求助10
22秒前
彭于晏应助水水采纳,获得10
23秒前
chuhong完成签到 ,获得积分10
23秒前
传奇3应助张道恒采纳,获得10
23秒前
24秒前
24秒前
香蕉觅云应助宁戎采纳,获得10
25秒前
勤奋的秋寒完成签到,获得积分10
27秒前
xiongyuan完成签到,获得积分10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4082819
求助须知:如何正确求助?哪些是违规求助? 3622070
关于积分的说明 11490685
捐赠科研通 3337004
什么是DOI,文献DOI怎么找? 1834475
邀请新用户注册赠送积分活动 903328
科研通“疑难数据库(出版商)”最低求助积分说明 821562