亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

O1 Using Machine Learning to predict the Severity of Acute Pancreatitis: A Systematic Review

医学 急性胰腺炎 胰腺炎 重症监护医学 梅德林 疾病严重程度 外科 内科学 政治学 法学
作者
Zain Ali Nadeem,Christopher Yau,Anthony Chan
出处
期刊:British Journal of Surgery [Oxford University Press]
卷期号:112 (Supplement_1)
标识
DOI:10.1093/bjs/znae318.001
摘要

Abstract Background Acute pancreatitis (AP) is an inflammatory condition of the pancreas where, in its severe form, has a mortality of up to 30%. The severity of AP is traditionally predicted with using static scoring systems such as Ranson and APACHE II based on clinical observations and/or blood test results. The Revised Atlanta Classification of AP, however, include the assessment of local complications such as peripancreatic fluid collections and necrosis which can be more subjective and relies on human clinical or radiological judgement. The aim of this study is to review the literature and evaluate the potential role and effectiveness of machine learning (ML) in the stratification of AP severity. Methods A systematic review was conducted using PubMed with search terms including acute pancreatitis, severity and machine learning. The inclusion criteria selected studies describing the development and validation of ML models predicting AP severity and to those publishing sensitivity and specificity data. Results There were 97 articles identified which after applying the inclusion and exclusion criteria, 11 studies were included in the review. ML training datasets ranged from 265 to over 350,000 patients, with inputs varying from patient demographics, clinical observations and blood results as well as radiomic data. The highest sensitivity (96%) and specificity (98%) predictors for severe AP outperformed Ranson, APACHE II and BISAP scoring systems. Conclusion ML models display superior accuracy when compared to traditional scoring systems in predicting AP severity. Radiomic data from Computed Tomography images can increase the sensitivity and specific of predictive models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的如之完成签到 ,获得积分10
3秒前
嘬痰猩猩完成签到 ,获得积分10
14秒前
18秒前
21秒前
24秒前
SNOWSUMMER发布了新的文献求助20
24秒前
SNOWSUMMER完成签到,获得积分10
1分钟前
1分钟前
yuan发布了新的文献求助30
1分钟前
夜休2024完成签到 ,获得积分10
1分钟前
GingerF给标致谷菱的求助进行了留言
1分钟前
1分钟前
兔图图发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
yux完成签到,获得积分10
2分钟前
丘比特应助兔图图采纳,获得10
2分钟前
2分钟前
2分钟前
滕皓轩完成签到 ,获得积分10
3分钟前
田様应助优秀的雪碧采纳,获得30
3分钟前
3分钟前
Anthonywll完成签到 ,获得积分10
4分钟前
一个要饭界的大佬完成签到 ,获得积分10
4分钟前
automan完成签到,获得积分10
5分钟前
充电宝应助marcelo采纳,获得10
5分钟前
XueXiTong完成签到,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
李健应助FEI采纳,获得10
6分钟前
6分钟前
marcelo发布了新的文献求助10
6分钟前
7分钟前
兔图图发布了新的文献求助10
7分钟前
marcelo完成签到,获得积分10
8分钟前
飘逸天荷发布了新的文献求助10
8分钟前
laughtale完成签到 ,获得积分10
9分钟前
Ava应助你的葳采纳,获得10
9分钟前
leexiaoyang发布了新的文献求助10
9分钟前
9分钟前
你的葳发布了新的文献求助10
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199344
求助须知:如何正确求助?哪些是违规求助? 4379966
关于积分的说明 13638711
捐赠科研通 4236359
什么是DOI,文献DOI怎么找? 2324006
邀请新用户注册赠送积分活动 1322015
关于科研通互助平台的介绍 1273270