Low-Level Data Fusion between Camera and Automotive RADAR for Vehicle and Pedestrian Detection Using nuScenes Database

计算机科学 汽车工业 行人 行人检测 雷达 传感器融合 计算机视觉 数据库 人工智能 工程类 电信 运输工程 航空航天工程
作者
Hachid Habib Cury,Evandro Leonardo Silva Teixeira,Rafael Rodrigues Silva
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-36-0064
摘要

<div class="section abstract"><div class="htmlview paragraph">Autonomous driving technology has indeed become a focal point of research globally, with significant efforts directed towards enhancing its key components: environment perception, vehicle localization, path planning, and motion control. These components work together to enable autonomous vehicles to navigate complex environments safely and efficiently. Among these components, environment perception stands out as critical, as it involves the robust, real-time detection of targets on the road. This process relies heavily on the integration of various sensors, making data fusion an indispensable tool in the early stages of automation. Sensor fusion between the camera and RADAR (Radio Detection and Ranging) has advantages because they are complementary sensors, where fusion combines the high lateral resolution from the vision system with the robustness in the face of adverse weather conditions and light invulnerability of RADAR, as well as having a lower production cost compared to the LiDAR (Light Detection and Ranging) sensor. Given the importance of sensor fusion for automated driving, this paper examines the low-level sensory fusion method that uses RADAR detection to generate Regions of Interest (ROIs) in the camera coordinate system. To do so, it was selected a fusion algorithm based on RRPN (Radar Region Proposal Network), which combines RADAR and camera data, and compared it to Faster R-CNN, which uses only camera data. Our goal was to study the advantages and limitations of the proposed method. We explored the NuScenes database to determine the best aspect ratios for different object sizes and modified the RRPN algorithm to generate more effective anchors. For training, we used camera and frontal RADAR data from the NuScenes database. The COCO dataset metrics under three different temporal conditions: day, night, and rain was used to evaluate the proposed models.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李高宗发布了新的文献求助10
1秒前
LCX完成签到,获得积分10
1秒前
冷静水蓝完成签到,获得积分10
1秒前
ZM发布了新的文献求助10
1秒前
raymond完成签到,获得积分10
2秒前
又见白龙完成签到,获得积分10
2秒前
Dr完成签到,获得积分10
2秒前
ccCherub完成签到 ,获得积分10
2秒前
2秒前
12发布了新的文献求助10
3秒前
英姑应助智慧吗喽采纳,获得10
3秒前
传奇3应助1459采纳,获得10
4秒前
钊宽发布了新的文献求助10
4秒前
4秒前
lpp_发布了新的文献求助10
5秒前
keyantong完成签到,获得积分10
5秒前
种花家的狗狗完成签到,获得积分10
5秒前
5秒前
易方完成签到,获得积分10
5秒前
yiyi完成签到,获得积分20
6秒前
6秒前
Daria完成签到,获得积分10
7秒前
7秒前
7秒前
冷静水蓝发布了新的文献求助10
7秒前
Square完成签到,获得积分10
7秒前
zhq完成签到,获得积分20
8秒前
Honor完成签到 ,获得积分10
8秒前
8秒前
无花果应助麻果采纳,获得100
8秒前
鲤鱼安青完成签到 ,获得积分10
9秒前
9秒前
9秒前
sunshine应助yiyi采纳,获得10
10秒前
隔岸发布了新的文献求助10
10秒前
项初蝶发布了新的文献求助10
10秒前
iNk应助Wangjing采纳,获得10
11秒前
insane发布了新的文献求助10
11秒前
可爱的函函应助安安采纳,获得10
11秒前
花露水完成签到,获得积分10
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830824
求助须知:如何正确求助?哪些是违规求助? 3373141
关于积分的说明 10478298
捐赠科研通 3093303
什么是DOI,文献DOI怎么找? 1702447
邀请新用户注册赠送积分活动 819066
科研通“疑难数据库(出版商)”最低求助积分说明 771232