The potential of an optimization process with respect to reduced mass can be used to the full extent by utilizing a high-strength material as it is, among others, strength-dependent. For the additive manufacturing process, Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M), 316L is commonly used. PBF-LB/M/316L has its benefits, like good material properties, such as availability, corrosion resistance, strength, and ductility. Nevertheless, a higher-strength material is required to fully take advantage of the optimization process and achieve a greater reduction in the mass of manufactured parts. The high-strength austenitic stainless steel investigated in this study is Printdur® HSA. Its main alloying elements are manganese, chromium, molybdenum, carbon, and nitrogen. The steel obtains its high strength properties from the alloyed carbon and nitrogen via solid solution hardening and improving the austenite stability. Therefore, it is defined as (C+N) steel. The datasheet of the powder manufacturer describes a yield strength (Rp0.2; 0.2% offset proof stress) of 915 MPa, an ultimate tensile strength of 1120 MPa, and an elongation at fracture of 30%. These are clear benefits in comparison to PBF-LB/M/316L. Since there are no further investigations made on Printdur® HSA, a thorough investigation of material behavior, fatigue life, and microstructure is needed.