MCNN-AAPT: accurate classification and functional prediction of amino acid and peptide transporters in secondary active transporters using protein language models and multi-window deep learning

运输机 计算生物学 机会之窗 氨基酸 计算机科学 人工智能 化学 生物化学 生物 基因 实时计算
作者
Muhammad Shahid Malik,Van The Le,Syed Muazzam Ali Shah,Yu‐Yen Ou
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-10
标识
DOI:10.1080/07391102.2024.2431664
摘要

Secondary active transporters play a crucial role in cellular physiology by facilitating the movement of molecules across cell membranes. Identifying the functional classes of these transporters, particularly amino acid and peptide transporters, is essential for understanding their involvement in various physiological processes and disease pathways, including cancer. This study aims to develop a robust computational framework that integrates pre-trained protein language models and deep learning techniques to classify amino acid and peptide transporters within the secondary active transporter (SAT) family and predict their functional association with solute carrier (SLC) proteins. The study leverages a comprehensive dataset of 448 secondary active transporters, including 36 solute carrier proteins, obtained from UniProt and the Transporter Classification Database (TCDB). Three state-of-the-art protein language models, ProtTrans, ESM-1b, and ESM-2, are evaluated within a deep learning neural network architecture that employs a multi-window scanning technique to capture local and global sequence patterns. The ProtTrans-based feature set demonstrates exceptional performance, achieving a classification accuracy of 98.21% with 87.32% sensitivity and 99.76% specificity for distinguishing amino acid and peptide transporters from other SATs. Furthermore, the model maintains strong predictive ability for SLC proteins, with an overall accuracy of 88.89% and a Matthews Correlation Coefficient (MCC) of 0.7750. This study showcases the power of integrating pre-trained protein language models and deep learning techniques for the functional classification of secondary active transporters and the prediction of associated solute carrier proteins. The findings have significant implications for drug development, disease research, and the broader understanding of cellular transport mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石莫言完成签到,获得积分10
2秒前
4秒前
gxz完成签到,获得积分10
4秒前
小刘医生完成签到,获得积分10
4秒前
6秒前
7秒前
Sxq发布了新的文献求助10
10秒前
三维完成签到,获得积分20
11秒前
13秒前
13秒前
科研通AI2S应助负责的方盒采纳,获得10
13秒前
日进一data完成签到,获得积分10
14秒前
song完成签到 ,获得积分10
16秒前
李健应助猪猪hero采纳,获得10
17秒前
kuai0Yu完成签到,获得积分10
17秒前
17秒前
悦耳寒松发布了新的文献求助10
18秒前
su完成签到,获得积分20
18秒前
开心晓啸发布了新的文献求助10
18秒前
小马甲应助wanglei采纳,获得100
19秒前
19秒前
20秒前
zexinCHEN完成签到,获得积分10
21秒前
21秒前
22秒前
aniannn发布了新的文献求助30
23秒前
zhang发布了新的文献求助10
25秒前
斯文败类应助YS采纳,获得10
25秒前
lin完成签到 ,获得积分10
25秒前
985博士完成签到,获得积分20
26秒前
悦耳寒松完成签到,获得积分10
27秒前
xxy完成签到,获得积分10
27秒前
猪猪hero发布了新的文献求助10
28秒前
32秒前
大碗牛肉面特辣完成签到 ,获得积分10
32秒前
33秒前
35秒前
orixero应助吴彦祖采纳,获得10
35秒前
桥豆麻袋应助文艺的紫萍采纳,获得10
36秒前
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798163
求助须知:如何正确求助?哪些是违规求助? 3343566
关于积分的说明 10316840
捐赠科研通 3060296
什么是DOI,文献DOI怎么找? 1679457
邀请新用户注册赠送积分活动 806599
科研通“疑难数据库(出版商)”最低求助积分说明 763282