An Adaptive Region-Based Transformer for Nonrigid Medical Image Registration With a Self-Constructing Latent Graph

图像配准 计算机科学 嵌入 变压器 人工智能 图嵌入 计算机视觉 模式识别(心理学) 卷积神经网络 图形 图像(数学) 理论计算机科学 工程类 电气工程 电压
作者
Sheng Lan,Xiu Li,Zhenhua Guo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16409-16423 被引量:2
标识
DOI:10.1109/tnnls.2023.3294290
摘要

Nonrigid registration of medical images is formulated usually as an optimization problem with the aim of seeking out the deformation field between a referential–moving image pair. During the past several years, advances have been achieved in the convolutional neural network (CNN)-based registration of images, whose performance was superior to most conventional methods. More lately, the long-range spatial correlations in images have been learned by incorporating an attention-based model into the transformer network. However, medical images often contain plural regions with structures that vary in size. The majority of the CNN-and transformer-based approaches adopt embedding of patches that are identical in size, disallowing representation of the inter-regional structural disparities within an image. Besides, it probably leads to the structural and semantical inconsistencies of objects as well. To address this issue, we put forward an innovative module called region-based structural relevance embedding (RSRE), which allows adaptive embedding of an image into unequally-sized structural regions based on the similarity of self-constructing latent graph instead of utilizing patches that are identical in size. Additionally, a transformer is integrated with the proposed module to serve as an adaptive region-based transformer (ART) for registering medical images nonrigidly. As demonstrated by the experimental outcomes, our ART is superior to the advanced nonrigid registration approaches in performance, whose Dice score is 0.734 on the LPBA40 dataset with $0.318\%$ foldings for deformation field, and is 0.873 on the ADNI dataset with $0.331\%$ foldings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小六发布了新的文献求助10
刚刚
SHUANG发布了新的文献求助10
1秒前
石破天惊完成签到,获得积分10
1秒前
1秒前
科研通AI6应助霸气的老姆采纳,获得10
1秒前
2秒前
ZXQ发布了新的文献求助10
2秒前
乐乐应助斯文曲奇采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
tjj发布了新的文献求助10
5秒前
5秒前
5秒前
nuoyefenfei完成签到,获得积分10
5秒前
6秒前
荒谬完成签到,获得积分10
6秒前
大方的羊青完成签到,获得积分10
6秒前
77最可爱完成签到,获得积分10
6秒前
wild完成签到,获得积分10
6秒前
南山无梅落完成签到 ,获得积分10
6秒前
6秒前
怕黑的樱发布了新的文献求助10
6秒前
学术疯子发布了新的文献求助10
7秒前
至期完成签到,获得积分10
7秒前
7秒前
不倦应助石破天惊采纳,获得10
7秒前
May完成签到,获得积分20
8秒前
chris发布了新的文献求助10
8秒前
8秒前
江子骞完成签到 ,获得积分0
9秒前
和谐的雅旋关注了科研通微信公众号
9秒前
catincafe发布了新的文献求助10
9秒前
cm_1231发布了新的文献求助10
10秒前
HarryQ完成签到,获得积分10
10秒前
今后应助紧张的世德采纳,获得10
11秒前
11秒前
十一完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664