Optical and SAR Images Matching Based on Phase Structure Convolutional Features

人工智能 计算机科学 合成孔径雷达 模式识别(心理学) 匹配(统计) 相似性(几何) 保险丝(电气) 计算机视觉 方向(向量空间) 卷积神经网络 图像配准 图像(数学) 数学 物理 统计 几何学 量子力学
作者
Yang Liu,Hua Qi,Shiyong Peng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:6
标识
DOI:10.1109/lgrs.2023.3298687
摘要

High-precision image matching techniques are required to fully utilize complementary information from optical and synthetic aperture radar (SAR) images. However, there are notable nonlinear radiometric differences (NRD) between optical and SAR images because of the various imaging techniques used by the various sensors. The existing template matching method based on the Siamese structure underutilizes the phase structure information, which is less susceptible to NRD, resulting in subpar matching precision. To address this problem, this letter proposes an optical and SAR image matching method based on phase structure convolutional features that use the log-Gabor filter to extract the multi-orientation phase structure information of the image. It constructs a multi-scale fusion SiamUNet-7 (MSF SiamUNet-7) network to extract the phase structure convolutional features to fully fuse the local texture information at a large scale and the global structure information at a small scale. The phase structure convolutional features of the optical and SAR images are used to generate the image pair similarity map using the mutual correlation layer, and the peak position in the similarity map is regarded as the best matching result. Experiments showed that, on the cropped Tiny-SEN1-2 dataset, the correct matching rate (CMR) and mean matching error (mME) of the threshold T ≤ 4 of the proposed method were 92.24% and 1.348, respectively, which improved the CMR( T ≤ 4) by 4.51% and reduced the mME by 0.046 compared with the original SiamUNet-9 model. The proposed method can effectively overcome the large NRD between the optical and SAR images and achieve high-precision matching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈小司完成签到,获得积分10
刚刚
ding应助fwx1997采纳,获得10
刚刚
杜凯兴完成签到,获得积分20
刚刚
舒服的微笑完成签到,获得积分10
刚刚
Diio发布了新的文献求助10
刚刚
羊咩咩发布了新的文献求助10
刚刚
1秒前
yciDo完成签到,获得积分10
1秒前
子车茗应助清问采纳,获得20
1秒前
2秒前
暴走发布了新的文献求助10
2秒前
2秒前
zhl发布了新的文献求助10
2秒前
3秒前
Lyea发布了新的文献求助10
3秒前
萧一完成签到,获得积分10
4秒前
4秒前
MEI23333333关注了科研通微信公众号
4秒前
半柚发布了新的文献求助10
4秒前
5秒前
在水一方应助y先生采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
沉默傲薇发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
闷声发完成签到,获得积分10
6秒前
彭于晏应助羊咩咩采纳,获得10
6秒前
zho发布了新的文献求助10
7秒前
yimi完成签到,获得积分10
7秒前
li发布了新的文献求助10
8秒前
科研犬完成签到,获得积分10
8秒前
9秒前
糊涂的傲旋完成签到,获得积分10
9秒前
CodeCraft应助helloworld采纳,获得10
9秒前
10秒前
Ttttt发布了新的文献求助10
10秒前
bkagyin应助Mini采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588965
求助须知:如何正确求助?哪些是违规求助? 4004274
关于积分的说明 12397194
捐赠科研通 3681089
什么是DOI,文献DOI怎么找? 2028954
邀请新用户注册赠送积分活动 1062439
科研通“疑难数据库(出版商)”最低求助积分说明 948236