已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 语言学 几何学 程序设计语言 操作系统
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:25
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
5秒前
华仔应助小艺采纳,获得10
7秒前
Cris发布了新的文献求助10
8秒前
唐唐完成签到 ,获得积分10
9秒前
11秒前
12秒前
几两完成签到 ,获得积分10
13秒前
15秒前
脆啵啵马克宝完成签到 ,获得积分10
15秒前
16秒前
16秒前
dudupig完成签到,获得积分10
17秒前
科研通AI5应助宋禄达采纳,获得10
19秒前
Xinxin发布了新的文献求助10
21秒前
爱笑的冷风完成签到 ,获得积分10
22秒前
22秒前
爆米花应助dudupig采纳,获得10
22秒前
23秒前
23秒前
起风了发布了新的文献求助10
26秒前
星夕发布了新的文献求助10
26秒前
曾医生发布了新的文献求助10
27秒前
A晨完成签到 ,获得积分10
28秒前
程负暄完成签到 ,获得积分10
29秒前
31秒前
迷你的心情完成签到,获得积分20
31秒前
精明的信封完成签到,获得积分10
32秒前
yyy完成签到 ,获得积分10
33秒前
勤奋的猫咪完成签到 ,获得积分10
34秒前
35秒前
39秒前
舒服的摇伽完成签到 ,获得积分10
39秒前
39秒前
忧虑的睫毛完成签到,获得积分10
40秒前
南风发布了新的文献求助10
40秒前
Rgly完成签到 ,获得积分10
41秒前
彭进水完成签到,获得积分10
42秒前
dudupig发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006485
求助须知:如何正确求助?哪些是违规求助? 4249902
关于积分的说明 13242275
捐赠科研通 4049939
什么是DOI,文献DOI怎么找? 2215529
邀请新用户注册赠送积分活动 1225436
关于科研通互助平台的介绍 1146138