亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DPF-Net: A Dual-Path Progressive Fusion Network for Retinal Vessel Segmentation

计算机科学 人工智能 特征(语言学) 块(置换群论) 分割 卷积神经网络 模式识别(心理学) 编码器 路径(计算) 计算机视觉 深度学习 数学 哲学 语言学 几何学 程序设计语言 操作系统
作者
Jianyong Li,Ge Gao,Lei Yang,Gui‐Bin Bian,Yanhong Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:45
标识
DOI:10.1109/tim.2023.3277946
摘要

Precise segmentation of retinal vessels from fundus images is essential for intervention in numerous diseases, and helpful in preventing and treating blindness. Deep convolutional neural network (DCNN) based approaches have achieved an excellent success in the automatic segmentation of retinal vessels. However, a single convolutional neural network (CNN) structure can only capture limited local features and lack the ability to extract global contexts. Meanwhile, the strategies used for the feature fusion of low-level detail information with high-level semantic information fail to handle the phenomenon of the semantic gap issue between encoder and decoder validly. Therefore, high-precision segmentation of retinal vessels still remains a challenging task. In this paper, a dual-path progressive fusion network, named DPF-Net, is proposed for accurate and end-to-end segmentation of retinal vessels from fundus images. To detect rich feature formation, a dual-path encoder is proposed for effective feature representation, which contains a CNN path for detecting local features and a recurrent convolutional path for extracting contextual information. It could acquire sufficient detailed information and rich contextual information at the same time. In addition, a progressive fusion strategy is proposed for effective feature aggregation at the same scale, adjacent scales and all scales, which is composed by interactive fusion (IF) block, cross-layer fusion (CLF) block and a scale feature fusion (SFF) block. Combine with the feature maps from different paths at the same scale, an IF block is proposed to fuse detailed features with contextual features to obtain fusion features. Meanwhile, a CLF block is proposed to fuse features between adjacent scales to guide low-level feature representation through high-level features. Finally, a SFF block is proposed to recalculate the weights of all scales to realize effective feature aggregation from all scales. Extensive experiments have conducted on three publicly available retinal datasets (DRIVE, CHASEDB1 and STARE). Experimental results show that proposed DPF-Net could achieve a better segmentation results compared to other state-of-the-art methods, especially the proposed progressive fusion strategy indeed promotes feature fusion and significantly boosts the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Aroma采纳,获得10
2秒前
7秒前
11秒前
13秒前
19秒前
哈哈发布了新的文献求助10
20秒前
单薄的从丹完成签到,获得积分10
22秒前
mumumuzzz发布了新的文献求助10
24秒前
32秒前
古铜完成签到 ,获得积分10
34秒前
CodeCraft应助Qiaoguliang采纳,获得10
36秒前
37秒前
完美世界应助飞快的孱采纳,获得10
37秒前
40秒前
zhang123笛完成签到,获得积分10
40秒前
天天快乐应助else采纳,获得10
41秒前
42秒前
43秒前
Qiaoguliang发布了新的文献求助10
48秒前
船长完成签到,获得积分10
1分钟前
lively发布了新的文献求助10
1分钟前
1分钟前
lively完成签到,获得积分20
1分钟前
哈哈完成签到,获得积分20
1分钟前
1分钟前
leapper完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
轻松音响完成签到,获得积分10
1分钟前
1分钟前
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
else发布了新的文献求助10
1分钟前
轻松音响发布了新的文献求助10
1分钟前
在水一方应助等待若山采纳,获得10
1分钟前
科研通AI6应助可别熬夜了采纳,获得10
1分钟前
BowieHuang应助轻松音响采纳,获得10
1分钟前
鹏虫虫完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549098
求助须知:如何正确求助?哪些是违规求助? 4634430
关于积分的说明 14634667
捐赠科研通 4575878
什么是DOI,文献DOI怎么找? 2509325
邀请新用户注册赠送积分活动 1485283
关于科研通互助平台的介绍 1456402