亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters

系统间交叉 激发态 有机发光二极管 单重态 电致发光 单重态裂变 三重态 光电子学 材料科学 光化学 化学 原子物理学 纳米技术 物理 图层(电子)
作者
Zhennan Zhao,Shouke Yan,Zhongjie Ren
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (14): 1942-1952 被引量:36
标识
DOI:10.1021/acs.accounts.3c00175
摘要

ConspectusCharacterized by the reverse intersystem crossing (RISC) process from the triplet state (T1) to the singlet state (S1), thermally activated delayed fluorescence (TADF) emitters, which produce light by harvesting both triplet and singlet excitons without noble metals, are considered to be third-generation organic electroluminescent materials. Rapid advances in molecular design criteria, understanding the photophysics underlying TADF, and applications of TADF materials as emitters in organic light-emitting diodes (OLEDs) have been achieved. Theoretically, enhanced spin-orbit coupling (SOC) between singlet and triplet states can result in a fast RISC process and thus a high light-emitting efficiency according to Fermi's golden rule. Therefore, regulating the nature of triplet excited states by elaborate molecular design to improve SOC is an effective approach to high-efficiency TADF-based OLEDs. Generally, on one hand, the increased local excited (LE) populations of the excited triplet state can significantly improve the nature flips between S1 and T1. On other hand, the reduced energy gap between S1 and the lowest triplet with a charge transfer (CT) characteristic can also enhance their vibronic coupling. Consequently, it is vital to determine how to regulate the nature of triplet excited states by molecular design to guide the material synthesis, especially for polymeric emitters.In this Account, we focus on modulating the strategy of triplet excited states for TADF emitters and an in-depth understanding of the photophysical processes, leading to optimized OLED device performance. We include several kinds of strategies to control the nature of triplet excited states to guide the synthesis of small-molecule and polymer TADF emitters: (1) Modulating the electronic distribution of conjugated polymeric backbones by copolymerizing the electron-donating host: accordingly, the nature of excited states can be changed, especially for triplets. Meanwhile, the utilization of excitons can be systematically improved by adjusting the electronic structure of triplet states with long-range distribution in the conjugated polymeric backbones. (2) Halogenating acceptors of TADF units: the introduced halogen atoms would reestablish the electronic distribution of the triplet and relocate the hole orbits, resulting in a CT and LE hybrid nature of a triplet transformed into a LE-predominant state, which favors the RISC process. (3) Stereostructure regulation: by constructing a diverse arrangement of three-dimensional spatial configurations or conjugated architectures, the nature of the triplet can also be finely tuned, such as hyperbranched structures with multiple triplet-singlet vibration couplings, half-dendronized-half-encapsulated asymmetric systems, trinaphtho[3,3,3] propeller-based three-dimensional spatial interspersed structures, intramolecular close-packed donor-acceptor systems, and so on. We hope that this Account will provide insights into new structures and mechanisms for achieving high-performance OLEDs based on regulating the nature of triplet excited states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闻巷雨完成签到 ,获得积分10
刚刚
1yyyyyy发布了新的文献求助10
1秒前
Altria完成签到,获得积分10
3秒前
7秒前
小蘑菇应助Altria采纳,获得20
7秒前
10秒前
濮阳灵竹发布了新的文献求助10
12秒前
13秒前
月小仙发布了新的文献求助10
17秒前
20秒前
落后的静枫完成签到 ,获得积分10
21秒前
月光发布了新的文献求助10
24秒前
传奇3应助拾光采纳,获得10
28秒前
30秒前
Orange应助明月松间赵女士采纳,获得10
34秒前
daishuheng完成签到 ,获得积分10
36秒前
濮阳灵竹完成签到,获得积分10
37秒前
半山发布了新的文献求助10
37秒前
小马甲应助贪玩钢铁侠采纳,获得10
41秒前
红色流星完成签到 ,获得积分10
42秒前
44秒前
东风完成签到,获得积分10
45秒前
吕吕完成签到 ,获得积分10
46秒前
月下独酌42应助VDC采纳,获得10
47秒前
侃侃发布了新的文献求助10
49秒前
半山完成签到,获得积分10
54秒前
李健应助月小仙采纳,获得10
57秒前
三岁半完成签到 ,获得积分10
1分钟前
yangyag完成签到 ,获得积分10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
巴山夜雨完成签到,获得积分10
1分钟前
1分钟前
灰灰发布了新的文献求助10
1分钟前
侃侃完成签到,获得积分10
1分钟前
虚幻的城发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777565
求助须知:如何正确求助?哪些是违规求助? 3322938
关于积分的说明 10212565
捐赠科研通 3038270
什么是DOI,文献DOI怎么找? 1667263
邀请新用户注册赠送积分活动 798073
科研通“疑难数据库(出版商)”最低求助积分说明 758201