Proportion optimization and strength prediction of CGS backfill materials based on GA-ELM mode

抗压强度 钙矾石 水泥 材料科学 相关系数 胶水 固化(化学) 结构工程 复合材料 数学 工程类 统计 硅酸盐水泥
作者
Yonglu Suo,Caixin Zhang,Lang Liu,Huisheng Qu,Yang Pan,Geng Xie
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:45 (2): 5173-5189 被引量:3
标识
DOI:10.1080/15567036.2023.2205353
摘要

The strength of the backfill body is an important aspect of safe production in backfill mining technology. In order to quickly and accurately obtain the strength of coal gasification slag -based cemented backfill materials with different ratios, the orthogonal design of 4 factors and 5 levels and variance analysis method were used to study the mass concentration (A), coal gasification slag (CGS)/cement (B), bone glue ratio (C), activator content (D) on the compressive strength of backfill body and a genetic algorithm with 28-day compressive strength of CGS-based backfill material as the response value was constructed, and verify the applicability of the model. The results show that: the primary and secondary factors affecting the 28-day compressive strength are C > A > B > D, the optimal ratio is 80% mass concentration, CGS/cement ratio 4:1, bone glue ratio 3:7, and activator 3%, according to orthogonal variance analysis; the activity of CGS is gradually stimulated as the curing age grows, the hydration products Ettringite and C-S-H are continually generated, and the compressive strength of the backfill material increases in tandem; In the GA-ELM model test set, the intensity correlation coefficient between the prediction and the measured value reached an average of 0.99, and the prediction accuracy was 71.8% and 43.5% higher than that of ELM and PSO-ELM respectively; Laboratory studies have shown that the GA-ELM prediction model has a prediction accuracy of 98.2% and that it can accurately estimate the strength of CGS cemented backfill.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助woods采纳,获得10
1秒前
1秒前
2秒前
酷波er应助灵巧谷波采纳,获得10
2秒前
LamChem发布了新的文献求助10
2秒前
纪飞松发布了新的文献求助10
3秒前
冰魂应助舒适路人采纳,获得10
4秒前
newyear发布了新的文献求助30
4秒前
4秒前
冰魂应助JW采纳,获得10
5秒前
6秒前
7秒前
树树完成签到,获得积分10
7秒前
佳佳完成签到,获得积分10
7秒前
朴素代芙发布了新的文献求助10
7秒前
penghuiye完成签到,获得积分10
8秒前
Ruoru发布了新的文献求助10
8秒前
9秒前
康康XY完成签到 ,获得积分10
9秒前
9秒前
10秒前
123发布了新的文献求助10
11秒前
12秒前
炎晨发布了新的文献求助10
13秒前
13秒前
乐乐应助Horizon采纳,获得10
14秒前
LamChem完成签到,获得积分20
14秒前
George发布了新的文献求助10
14秒前
16秒前
斯文败类应助舒适路人采纳,获得10
16秒前
woods发布了新的文献求助10
16秒前
虚心的问丝完成签到,获得积分10
16秒前
123完成签到,获得积分10
18秒前
19秒前
囡囡发布了新的文献求助10
19秒前
20秒前
Joy发布了新的文献求助10
21秒前
科研通AI5应助树树采纳,获得10
22秒前
1111完成签到,获得积分20
22秒前
翩璸发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783663
求助须知:如何正确求助?哪些是违规求助? 3328848
关于积分的说明 10238905
捐赠科研通 3044253
什么是DOI,文献DOI怎么找? 1670861
邀请新用户注册赠送积分活动 799939
科研通“疑难数据库(出版商)”最低求助积分说明 759171