Construction of an end‐to‐end regression neural network for the determination of a quantitative index sagittal root inclination

组内相关 矢状面 卷积神经网络 人工智能 计算机科学 锥束ct 相关系数 分割 人工神经网络 数学 模式识别(心理学) 计算机断层摄影术 再现性 统计 医学 机器学习 放射科
作者
Yixiong Lin,Mengru Shi,Dawei Xiang,Peisheng Zeng,Zhuohong Gong,Haiwen Liu,Quan Liu,Zhuofan Chen,Juan Xia,Zetao Chen
出处
期刊:Journal of Periodontology [Wiley]
卷期号:93 (12): 1951-1960 被引量:6
标识
DOI:10.1002/jper.21-0492
摘要

Abstract Background Immediate implant placement in the esthetic area requires comprehensive assessments with nearly 30 quantitative indexes. Most artificial intelligence (AI)‐driven measurements of quantitative indexes depend on segmentation or landmark detection, which require extra labeling of images and contain possible intraclass errors. Methods For the initial attempt, the method was tested on sagittal root inclination measurement. This study had developed an accurate and efficient end‐to‐end model incorporating a convolutional neural network (CNN) based on unlabeled cone‐beam computed tomography (CBCT) images for immediate implant placement diagnosis and treatment. The model took pretrained ResNeXt101 as the backbone and was constructed based on 2,920 CBCT images with corresponding angles of the tooth axis and bone axis. The performance of our CNN model was evaluated on a separate test set. Results Our model exhibited high prediction accuracy in sagittal root inclination measurements, as evidenced by the low mean average error of 2.16°, the high correlation coefficient of 0.915 to manual measurement, and the narrow 95% confidence interval shown by Bland‐Altman plots. The intraclass correlation coefficient further confirmed the measurement accuracy of our model was comparable with that of junior clinicians. The model took merely 0.001 seconds for each CBCT image, making it highly efficient. To better understand the model's quality, we visualized our end‐to‐end CNN model through Guided Backpropagation, Grad‐CAM, and Guided Grad‐CAM, and confirmed its effectiveness in region recognition. Conclusions We succeeded in taking the first step in constructing the end‐to‐end immediate implant placement AI tool through sagittal root inclination measurements without intermediate steps and extra labeling on images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助孙俪采纳,获得10
1秒前
寻凝完成签到,获得积分10
4秒前
4秒前
4秒前
manan发布了新的文献求助10
5秒前
menyanyan发布了新的文献求助10
5秒前
寻凝发布了新的文献求助10
7秒前
minguk发布了新的文献求助10
8秒前
9秒前
英姑应助隐形初曼采纳,获得10
10秒前
嘎嘎嘎嘎发布了新的文献求助50
10秒前
ruixuekuangben完成签到,获得积分0
11秒前
今后应助Debiao采纳,获得10
11秒前
12秒前
干秋寒完成签到,获得积分10
12秒前
13秒前
云中应助瀼瀼采纳,获得20
13秒前
高高冰蝶应助开放友灵采纳,获得10
14秒前
研友_VZG7GZ应助寻凝采纳,获得10
15秒前
Ava应助花小研采纳,获得10
15秒前
16秒前
16秒前
_呱_完成签到,获得积分10
16秒前
Serena510完成签到 ,获得积分10
16秒前
17秒前
芋泥波波完成签到,获得积分10
17秒前
英俊的铭应助不知名选手采纳,获得10
17秒前
Yiwaa完成签到,获得积分10
18秒前
万能图书馆应助Arya采纳,获得10
20秒前
DDDazhi完成签到,获得积分10
21秒前
22秒前
25秒前
好名字发布了新的文献求助10
25秒前
高高冰蝶应助开放友灵采纳,获得10
25秒前
单薄的八宝粥完成签到,获得积分20
25秒前
26秒前
张冉冉完成签到,获得积分10
26秒前
27秒前
饱满的海秋完成签到,获得积分10
28秒前
DDDazhi发布了新的文献求助20
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777