Controlling X-ray-activated persistent luminescence for emerging applications

纳米技术 发光 持续发光 荧光粉 材料科学 激发 计算机科学 工程物理 光电子学 物理 工程类 电气工程 热释光
作者
Hao Suo,Xin Zhang,Feng Wang
出处
期刊:Trends in chemistry [Elsevier]
卷期号:4 (8): 726-738 被引量:55
标识
DOI:10.1016/j.trechm.2022.05.001
摘要

As an alternative excitation source for PersL, X-ray opens a door for converting ordinary luminescent materials into PersL phosphors, thereby significantly expanding the library of PersL materials. Various strategies have become available to control the wavelength, intensity, and duration of X-PersL, which provides practical guidelines for designing high-performance X-PersL materials. By leveraging X-ray excitation, the study of PersL processes has evolved into a highly interdisciplinary field that is rapidly expanding at the frontiers of biomedical theranostics, information storage, and advanced X-ray imaging. Inorganic persistent luminescence (PersL) materials that emit self-sustained emissions after the cessation of excitation have experienced rapid development in recent years. In particular, the emergence of X-ray as the charging source for PersL has enabled extended control over PersL properties and prompted a breakthrough in advanced applications. Herein, we review X-ray-activated PersL (X-PersL) inorganic materials from the perspective of performance optimization and application expansion. We survey various strategies for controlling the wavelength, intensity, and duration of X-PersL, which paves the way for emerging applications in biomedical diagnosis and therapy, optical information storage, and 3D X-ray imaging techniques. We attempt to conclude the rationale behind these developments and challenges to be tackled, simultaneously highlighting future opportunities for X-PersL research. Inorganic persistent luminescence (PersL) materials that emit self-sustained emissions after the cessation of excitation have experienced rapid development in recent years. In particular, the emergence of X-ray as the charging source for PersL has enabled extended control over PersL properties and prompted a breakthrough in advanced applications. Herein, we review X-ray-activated PersL (X-PersL) inorganic materials from the perspective of performance optimization and application expansion. We survey various strategies for controlling the wavelength, intensity, and duration of X-PersL, which paves the way for emerging applications in biomedical diagnosis and therapy, optical information storage, and 3D X-ray imaging techniques. We attempt to conclude the rationale behind these developments and challenges to be tackled, simultaneously highlighting future opportunities for X-PersL research. the electrostatic interactions between electric charges. a computational quantum mechanical modeling method to investigate the electronic structure of many-body systems, particularly atoms, molecules, and condensed phases. the number of different states at a particular energy level that electrons are allowed to occupy. a type of point defect in crystalline solids in which an atom moves from its ordinary site to the interstitial position due to thermal fluctuations, creating a vacancy and an interstitial atom at the same time. a phenomenon in which electrically charged particles are released from the crystal lattice after absorbing electromagnetic radiation. a nondestructive spectroscopy technique for studying voids and defects in crystal lattice. a quantum mechanical phenomenon in which a particle tunnels through a barrier that classically could not be surmounted. a solid-state reaction that transpires under the strict control of molecular packing in the crystal lattice, such as reduction-oxidation reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可爱的函函应助Gardenia2001采纳,获得10
刚刚
潘贤铖发布了新的文献求助10
1秒前
羊咩咩咩发布了新的文献求助10
1秒前
浮水发布了新的文献求助10
2秒前
孤独白拍完成签到 ,获得积分10
2秒前
萧然发布了新的文献求助10
3秒前
3秒前
苗文婷关注了科研通微信公众号
3秒前
lex完成签到,获得积分10
3秒前
LAVINE发布了新的文献求助10
4秒前
熬夜波比应助松子采纳,获得10
5秒前
Ulysses完成签到,获得积分10
6秒前
6秒前
勤劳小蜜蜂完成签到,获得积分10
6秒前
江二毛发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
Shixin完成签到,获得积分10
11秒前
13秒前
Shixin发布了新的文献求助10
16秒前
木桶人plus完成签到 ,获得积分10
16秒前
16秒前
喜悦的铭发布了新的文献求助10
17秒前
搜集达人应助刻苦大叔采纳,获得10
18秒前
欢欢发布了新的文献求助10
18秒前
王先进完成签到,获得积分20
19秒前
科研通AI6应助尹尹采纳,获得10
19秒前
20秒前
powerfuled发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
大模型应助付研琪采纳,获得10
24秒前
wanci应助krenc采纳,获得10
26秒前
JunfDai发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662698
求助须知:如何正确求助?哪些是违规求助? 4844399
关于积分的说明 15100814
捐赠科研通 4821107
什么是DOI,文献DOI怎么找? 2580543
邀请新用户注册赠送积分活动 1534630
关于科研通互助平台的介绍 1493102