Multimorbidity measures differentially predicted mortality among older Chinese adults

医学 人口学 多发病率 统计的 比例危险模型 老年学 统计 共病 内科学 数学 社会学
作者
Shanshan Yao,Huiwen Xu,Ling Han,Kaipeng Wang,Guiying Cao,Nan Li,Yan Luo,Yuming Chen,Hexuan Su,Zishuo Chen,Zi-Ting Huang,Yonghua Hu,Beibei Xu
出处
期刊:Journal of Clinical Epidemiology [Elsevier BV]
卷期号:146: 97-105 被引量:9
标识
DOI:10.1016/j.jclinepi.2022.03.002
摘要

This study aimed to examine and compare the associations between different multimorbidity measures and mortality among older Chinese adults.Using the Chinese Longitudinal Healthy Longevity Survey 2002-2018, data on fourteen chronic conditions from 13,144 participants aged ≥65 years were collected. Multimorbidity measures included condition counts, multimorbidity patterns (examined by exploratory factor analysis), and multimorbidity trajectories (examined by a group-based trajectory model). Mortality risk associated with different multimorbidity measures was each analyzed using Cox regression. C-statistic, the Integrated Discrimination Improvement (IDI), and the Net Reclassification Index (NRI) were used to compare the performance of different multimorbidity measures.Participants with multimorbidity, regardless of measurements, had a higher risk of death compared with people without multimorbidity. Compared with the mortality prediction model using age and sex, C-statistics showed added discrimination (over 0.77, all P < .05) for models with multimorbidity measures. Multimorbidity trajectory showed integrated discrimination and net reclassification improvement for mortality prediction compared to condition count (IDI = 0.042, NRI = 0.033) and multimorbidity pattern (IDI = 0.041, NRI = 0.069).Adding multimorbidity measures significantly improved the performance of a mortality prediction model using age and sex as predictors. Trajectory-based measures of multimorbidity performed better than count- and pattern-based measures for mortality prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松小蜜蜂完成签到,获得积分20
1秒前
VV完成签到 ,获得积分10
1秒前
gloval发布了新的文献求助10
1秒前
2秒前
Rain完成签到,获得积分10
3秒前
支元瑶完成签到,获得积分20
3秒前
包容诗槐完成签到,获得积分10
3秒前
6秒前
若水完成签到 ,获得积分10
7秒前
华仔应助慈祥的绮采纳,获得10
8秒前
纯情的山河完成签到,获得积分10
9秒前
kytwenxian完成签到,获得积分0
10秒前
西乡塘塘主完成签到,获得积分10
10秒前
闪闪完成签到 ,获得积分10
12秒前
电催化CYY完成签到,获得积分10
13秒前
小红书求接接接接一篇完成签到,获得积分20
13秒前
15秒前
mmz完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
小橙子完成签到,获得积分10
17秒前
18秒前
Ryan完成签到,获得积分20
18秒前
正值清白之年完成签到,获得积分10
19秒前
xd发布了新的文献求助10
19秒前
20秒前
悦耳静枫发布了新的文献求助30
21秒前
Jasper应助kkkl采纳,获得10
21秒前
21秒前
科目三应助闻闻采纳,获得10
22秒前
Qovn完成签到,获得积分10
22秒前
netrandwalk完成签到,获得积分10
23秒前
tian完成签到 ,获得积分10
23秒前
Ryan发布了新的文献求助10
24秒前
25秒前
25秒前
streetpants发布了新的文献求助10
26秒前
科研通AI5应助麦子采纳,获得10
27秒前
陈嘻嘻完成签到 ,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742