Emergent Kagome Electrides

凝聚态物理 超导电性 化学 电子 费米能级 费米面 物理 量子力学
作者
Jing‐Yang You,Bo Gu,Gang Su,Yuan Ping Feng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (12): 5527-5534 被引量:58
标识
DOI:10.1021/jacs.2c00177
摘要

In a two-dimensional (2D) Kagome lattice, the ideal Kagome bands including Dirac cones, van Hove singularities, and a flat band are highly expected, because they can provide a promising platform to investigate novel physical phenomena. However, in the reported Kagome materials, the complex 3D and multiorder electron hoppings result in the disappearance of the ideal Kagome bands in these systems. Here, we propose an alternative way to achieve the ideal Kagome bands in non-Kagome materials by confining excess electrons in the system to the crystal interstitial sites to form a 2D Kagome lattice, coined as a Kagome electride. Then, we predict two novel stable 2D Kagome electrides in hexagonal materials Li5Si and Li5Sn, whose band structures are similar to the ideal Kagome bands, including topological Dirac cones with beautiful Fermi arcs in their surface states, van Hove singularities, and a flat band. In addition, Li5Si is revealed to be a low-temperature superconductor at ambient pressure, and its superconducting transition temperature Tc can be increased from 1.1 K at 0 GPa to 7.2 K at 100 GPa. The high Tc is unveiled to be the consequence of strong electron-phonon coupling originated from the sp-hybridized phonon-coupled bands and phonon softening caused by strong Fermi nesting. Due to the strong Fermi nesting, the charge density wave phase transition occurs at 110 GPa with the lattice reconstructed from hexagonal to orthorhombic, accompanied with the increase of Tc to 10.5 K. Our findings pave an alternative way to fabricate more real materials with Kagome bands in electrides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
zoe发布了新的文献求助10
1秒前
寡妇哥完成签到 ,获得积分10
2秒前
2秒前
3秒前
盏盏完成签到 ,获得积分10
4秒前
之甫关注了科研通微信公众号
5秒前
sp完成签到,获得积分10
5秒前
房天川发布了新的文献求助10
6秒前
纳米发布了新的文献求助10
7秒前
8秒前
Hello应助齐平露采纳,获得10
10秒前
LIN96T发布了新的文献求助10
10秒前
11秒前
11秒前
zzz完成签到 ,获得积分10
12秒前
12秒前
酷波er应助房天川采纳,获得10
12秒前
mika完成签到,获得积分10
13秒前
15秒前
慕青应助littleE采纳,获得10
16秒前
17秒前
旺帮主发布了新的文献求助10
17秒前
sophiapk完成签到,获得积分10
17秒前
17秒前
赫连烙发布了新的文献求助10
18秒前
mika发布了新的文献求助10
18秒前
拾柒关注了科研通微信公众号
19秒前
彧九完成签到 ,获得积分10
20秒前
大模型应助猪在天上飞采纳,获得10
21秒前
赵坤煊完成签到 ,获得积分10
21秒前
齐平露发布了新的文献求助10
21秒前
栗松琛发布了新的文献求助10
22秒前
23秒前
zyc发布了新的文献求助10
23秒前
华仔应助陈皮采纳,获得10
23秒前
CipherSage应助旺帮主采纳,获得10
24秒前
季安发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751805
求助须知:如何正确求助?哪些是违规求助? 4097093
关于积分的说明 12676505
捐赠科研通 3809744
什么是DOI,文献DOI怎么找? 2103432
邀请新用户注册赠送积分活动 1128592
关于科研通互助平台的介绍 1005521