Coordinate-based efficient indexing mechanism for intelligent IoT systems in heterogeneous edge computing

计算机科学 边缘计算 GSM演进的增强数据速率 计算机网络 搜索引擎索引 延迟(音频) 服务器 边缘设备 分布式计算 节点(物理) 云计算 操作系统 电信 结构工程 人工智能 工程类
作者
Songtao Tang,Xin Du,Zhihui Lu,Keke Gai,Jie Wu,Patrick C. K. Hung,Kim‐Kwang Raymond Choo
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier BV]
卷期号:166: 45-56 被引量:8
标识
DOI:10.1016/j.jpdc.2022.04.012
摘要

Powered by edge servers (also called as edge nodes) which are close to the data source, distributed edge AI processes the huge amounts of data generated by Internet of Things (IoT) devices, extracting value for users. In edge computing, massive data are stored in several distributed edge nodes with heterogeneous capabilities. Intelligent applications running on one edge node may need data from other edge nodes. An efficient data indexing mechanism can rapidly locate the edge node where the data is kept, supporting latency-sensitive intelligent applications. The existing indexing methods in edge computing assume that all edge nodes are the same in capability and the number of edge nodes is constant. This paper proposes CREIM, a coordinate-based efficient indexing mechanism for intelligent IoT systems in heterogeneous edge computing. CREIM achieves fair load balancing on edge nodes with heterogeneous capabilities. The indexing mechanism deals well with the horizontal scaling of edge nodes. Besides, CREIM addresses a fast lookup with one overlay hop, providing low latency data retrieval for edge intelligent applications. In the experiments, CREIM is applied in a realistic network simulated by the mininet and the routing forwarding is supported by the P4 switch. The experiments are constructed by combining real location datasets of Shanghai Telecoms base stations with the real-collected requests of end-devices. The experimental results demonstrate that CREIM achieves a near-optimal latency of index-lookup, adapts the heterogeneous capabilities among edge nodes and reduces the cost of increasing/decreasing edge nodes by 56.36% compared with the state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZzz完成签到,获得积分10
1秒前
Crystal完成签到,获得积分10
2秒前
111完成签到,获得积分10
3秒前
催催催完成签到,获得积分10
3秒前
星辰大海应助Hao采纳,获得10
6秒前
shisujuan完成签到,获得积分20
6秒前
子健完成签到,获得积分10
7秒前
8秒前
8秒前
10秒前
Lucas应助无敌幸运儿采纳,获得10
10秒前
不会学术的羊完成签到,获得积分10
12秒前
jy发布了新的文献求助10
12秒前
13秒前
yh完成签到,获得积分10
13秒前
ZoeZhang发布了新的文献求助10
13秒前
loveyourself完成签到,获得积分10
14秒前
漂亮的雨琴完成签到,获得积分10
15秒前
whisper完成签到 ,获得积分10
15秒前
hzj发布了新的文献求助10
15秒前
16秒前
17秒前
邹鸿完成签到 ,获得积分10
19秒前
Raymon33发布了新的文献求助30
19秒前
20秒前
21秒前
coke完成签到,获得积分10
22秒前
ZoeZhang完成签到,获得积分10
22秒前
爱笑的酸奶完成签到 ,获得积分10
23秒前
豆子发布了新的文献求助10
24秒前
hzj完成签到,获得积分10
24秒前
25秒前
彻底完成签到,获得积分10
25秒前
李喜喜完成签到,获得积分10
26秒前
ZHANG_Kun完成签到 ,获得积分10
26秒前
shuxi完成签到,获得积分10
28秒前
大模型应助都是采纳,获得30
28秒前
30秒前
任性慕青发布了新的文献求助10
31秒前
科研通AI5应助shinble采纳,获得10
31秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816942
求助须知:如何正确求助?哪些是违规求助? 3360342
关于积分的说明 10407653
捐赠科研通 3078322
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 814001
科研通“疑难数据库(出版商)”最低求助积分说明 767958