Region-Object Relation-Aware Dense Captioning via Transformer.

隐藏字幕 计算机科学 变压器 编码器 人工智能 自然语言处理 计算机视觉
作者
Zhuang Shao,Jungong Han,Demetris Marnerides,Kurt Debattista
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tnnls.2022.3152990
摘要

Dense captioning provides detailed captions of complex visual scenes. While a number of successes have been achieved in recent years, there are still two broad limitations: 1) most existing methods adopt an encoder-decoder framework, where the contextual information is sequentially encoded using long short-term memory (LSTM). However, the forget gate mechanism of LSTM makes it vulnerable when dealing with a long sequence and 2) the vast majority of prior arts consider regions of interests (RoIs) equally important, thus failing to focus on more informative regions. The consequence is that the generated captions cannot highlight important contents of the image, which does not seem natural. To overcome these limitations, in this article, we propose a novel end-to-end transformer-based dense image captioning architecture, termed the transformer-based dense captioner (TDC). TDC learns the mapping between images and their dense captions via a transformer, prioritizing more informative regions. To this end, we present a novel unit, named region-object correlation score unit (ROCSU), to measure the importance of each region, where the relationships between detected objects and the region, alongside the confidence scores of detected objects within the region, are taken into account. Extensive experimental results and ablation studies on the standard dense-captioning datasets demonstrate the superiority of the proposed method to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤思睿完成签到 ,获得积分10
刚刚
FGG完成签到,获得积分10
2秒前
le123zxc发布了新的文献求助10
2秒前
你坤叔公完成签到,获得积分20
2秒前
2秒前
2秒前
JamesPei应助111111采纳,获得10
2秒前
3秒前
Akim应助邓涛采纳,获得10
3秒前
Sandwich发布了新的文献求助20
4秒前
李小聪完成签到,获得积分10
4秒前
猪猪hero应助叫秋田犬的猫采纳,获得10
4秒前
6秒前
6秒前
7秒前
Ssr发布了新的文献求助10
7秒前
我又不乱来完成签到,获得积分10
7秒前
lihaifeng发布了新的文献求助10
9秒前
卢嘉禾完成签到,获得积分10
9秒前
隐形曼青应助cat采纳,获得10
9秒前
SSS发布了新的文献求助10
10秒前
pluto应助苇一采纳,获得10
11秒前
pluto应助苇一采纳,获得10
11秒前
pluto应助苇一采纳,获得10
11秒前
SciGPT应助苇一采纳,获得10
11秒前
12秒前
stephy发布了新的文献求助20
12秒前
领导范儿应助XLL小绿绿采纳,获得30
13秒前
13秒前
轩辕寄风发布了新的文献求助10
13秒前
13秒前
科目三应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得30
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
辛苦科研人完成签到 ,获得积分10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
爱笑音响应助科研通管家采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964247
求助须知:如何正确求助?哪些是违规求助? 3509993
关于积分的说明 11150385
捐赠科研通 3243923
什么是DOI,文献DOI怎么找? 1792230
邀请新用户注册赠送积分活动 873681
科研通“疑难数据库(出版商)”最低求助积分说明 803884