清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Robust Detection Method for Multilane Lines in Complex Traffic Scenes

人工智能 计算机科学 像素 分割 稳健性(进化) 计算机视觉 线段 图像分割 直线(几何图形) 嵌入 模式识别(心理学) 数学 生物化学 化学 几何学 基因
作者
Xiang Song,Xiaoyu Che,Huilin Jiang,Shun Yan,Ling Li,Chunxiao Ren,Hai Wang
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2022: 1-14 被引量:4
标识
DOI:10.1155/2022/7919875
摘要

The robustness and stability of lane detection is vital for advanced driver assistance vehicle technology and even autonomous driving technology. To meet the challenges of real-time lane detection in complex traffic scenes, a simple but robust multilane detection method is proposed in this paper. The proposed method breaks down the lane detection task into two stages, that is, lane line detection algorithm based on instance segmentation and lane modeling algorithm based on adaptive perspective transform. Firstly, the lane line detection algorithm based on instance segmentation is decomposed into two tasks, and a multitask network based on MobileNet is designed. This algorithm includes two parts: lane line semantic segmentation branch and lane line Id embedding branch. The lane line semantic segmentation branch is mainly used to obtain the segmentation results of lane pixels and reconstruct the lane line binary image. The lane line Id embedding branch mainly determines which pixels belong to the same lane line, thereby classifying different lane lines into different categories and then clustering these different categories. Secondly, the adaptive perspective transformation model is adopted. In this model, the motion information is used to accurately convert the original image into a bird’s-eye view image, and then the least-squares second-order polynomial fitting is performed on the lane line pixels. Finally, experiments on the CULane dataset show that the proposed method achieved similar or better performance compared with several state-of-the-art methods, the F1 score of the proposed method in the normal test set and most challenge test sets is better than other algorithms, which verifies the effectiveness of the proposed method, and then the field experiments results show that the proposed method has good practical application value in various complex traffic scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
15秒前
18秒前
puzhongjiMiQ完成签到,获得积分10
20秒前
小萝卜1234发布了新的文献求助10
21秒前
21秒前
puzhongjiMiQ发布了新的文献求助10
22秒前
酷波er应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
慕青应助TiAmo采纳,获得10
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
开心每一天完成签到 ,获得积分10
2分钟前
无限的千凝完成签到 ,获得积分10
2分钟前
2分钟前
Ann发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
正直小鸭子应助Ann采纳,获得10
2分钟前
霸气雁桃发布了新的文献求助10
2分钟前
2分钟前
ding应助孝顺的冬卉采纳,获得10
2分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
纯氧完成签到,获得积分10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494131
求助须知:如何正确求助?哪些是违规求助? 4591988
关于积分的说明 14435106
捐赠科研通 4524645
什么是DOI,文献DOI怎么找? 2478905
邀请新用户注册赠送积分活动 1463844
关于科研通互助平台的介绍 1436702