Data-driven bus timetabling with spatial-temporal travel time

计算机科学 全球定位系统 聚类分析 集合(抽象数据类型) 大数据 旅行时间 数据挖掘 数学优化 工程类 数学 运输工程 人工智能 电信 程序设计语言
作者
Xiang Li,Yang Ming,Hongguang Ma,Kaitao Yu
出处
期刊:Industrial Management and Data Systems [Emerald Publishing Limited]
卷期号:122 (10): 2281-2298 被引量:1
标识
DOI:10.1108/imds-10-2021-0629
摘要

Purpose Travel time at inter-stops is a set of important parameters in bus timetabling, which is usually assumed to be normal (log-normal) random variable in literature. With the development of digital technology and big data analytics ability in the bus industry, practitioners prefer to generate deterministic travel time based on the on-board GPS data under maximum probability rule and mean value rule, which simplifies the optimization procedure, but performs poorly in the timetabling practice due to the loss of uncertain nature on travel time. The purpose of this study is to propose a GPS-data-driven bus timetabling approach with consideration of the spatial-temporal characteristic of travel time. Design/methodology/approach The authors illustrate that the real-life on-board GPS data does not support the hypothesis of normal (log-normal) distribution on travel time at inter-stops, thereby formulating the travel time as a scenario-based spatial-temporal matrix, where K -means clustering approach is utilized to identify the scenarios of spatial-temporal travel time from daily observation data. A scenario-based robust timetabling model is finally proposed to maximize the expected profit of the bus carrier. The authors introduce a set of binary variables to transform the robust model into an integer linear programming model, and speed up the solving process by solution space compression, such that the optimal timetable can be well solved by CPLEX. Findings Case studies based on the Beijing bus line 628 are given to demonstrate the efficiency of the proposed methodology. The results illustrate that: (1) the scenario-based robust model could increase the expected profits by 15.8% compared with the maximum probability model; (2) the scenario-based robust model could increase the expected profit by 30.74% compared with the mean value model; (3) the solution space compression approach could effectively shorten the computing time by 97%. Originality/value This study proposes a scenario-based robust bus timetabling approach driven by GPS data, which significantly improves the practicality and optimality of timetable, and proves the importance of big data analytics in improving public transport operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文晓灵完成签到 ,获得积分10
4秒前
Lee完成签到,获得积分20
5秒前
6秒前
bkagyin应助stretchability采纳,获得10
6秒前
奔铂儿钯完成签到,获得积分10
8秒前
j7337完成签到,获得积分10
8秒前
嘻嘻哈哈发布了新的文献求助10
10秒前
11秒前
cai完成签到 ,获得积分10
11秒前
kidd瑞完成签到,获得积分10
11秒前
没耳朵的小仙女完成签到 ,获得积分10
15秒前
默默完成签到 ,获得积分10
16秒前
hdx完成签到 ,获得积分10
17秒前
昔昔完成签到 ,获得积分10
18秒前
18275412695发布了新的文献求助10
18秒前
科研小郭完成签到,获得积分10
20秒前
所所应助嘻嘻哈哈采纳,获得10
21秒前
快乐小恬完成签到 ,获得积分10
22秒前
NiceSunnyDay完成签到 ,获得积分10
23秒前
25秒前
灰太狼大王完成签到 ,获得积分10
29秒前
确幸完成签到,获得积分10
29秒前
ttt完成签到,获得积分10
30秒前
罗氏集团完成签到,获得积分10
32秒前
32秒前
大轩完成签到 ,获得积分10
32秒前
乔诶次完成签到 ,获得积分10
33秒前
drift完成签到,获得积分10
34秒前
白也完成签到,获得积分10
35秒前
37秒前
开心夏旋完成签到 ,获得积分10
38秒前
38秒前
jixuchance完成签到,获得积分10
39秒前
懒兰完成签到 ,获得积分10
39秒前
大模型应助shouyu29采纳,获得10
39秒前
Lotus完成签到,获得积分10
40秒前
Kkk完成签到 ,获得积分10
41秒前
李李李完成签到,获得积分10
42秒前
shrimp5215完成签到,获得积分10
43秒前
math发布了新的文献求助30
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792575
求助须知:如何正确求助?哪些是违规求助? 3336810
关于积分的说明 10282251
捐赠科研通 3053679
什么是DOI,文献DOI怎么找? 1675672
邀请新用户注册赠送积分活动 803696
科研通“疑难数据库(出版商)”最低求助积分说明 761495